Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Received : 2013.01.31
  • Accepted : 2013.03.25
  • Published : 2013.03.30


Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.



  1. A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, "Histone deacetylases (HDACs): characterization of the classical HDAC family", Biochem. J., Vol. 370, pp. 737-749, 2003.
  2. K. Ito, P. J. Barnes, and I. M. Adcock, "Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12", Mol. Cell. Biol., Vol. 20, pp. 6891-6903, 2000.
  3. D. J. Witter, S. Belvedere, L. Chen, J. Paul Secrist, R. T. Mosleyd, and T. A. Millera, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp 4562-4567, 2007.
  4. T. Sundarapandian, J. Shalini, S. Sugunadevi, and L. K. Woo, "Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery", J. Mol. Graph. Model., Vol. 29, pp. 382-395, 2010.
  5. S. Thangapandian, S. John, S. Sakkiah, and K. W. Lee, "Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design", Eur. J. Med. Chem., Vol. 45, pp. 4409-4417, 2010.
  6. D. J. Witter, S. Belvedere, L. Chen, J. P. Secrist, R. T. Mosleyd, and T. A. Miller, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp. 4562-4567, 2007.
  7. S. Vadivelan, B.N. Sinha, G. Rambabu, K. Boppana, and S.A.R.P. Jagarlapudi, "Pharmacophore model ing and virtual screening studies to design some potential histone deacetylase inhibitors as new leads", J. Mol. Graph. Model., Vol. 26, pp. 935-946, 2008.
  8. Y. Chen, H. Li, W. Tang, C. Zhu, Y. Jiang, J. Zou, Q. Yu and Q. You, "3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment", Eur. J. Med. Chem., Vol.44, pp. 2868-2876, 2009.
  9. R. Heinke, L. Carlino, S. Kannan, M. Jung, and W. Sippl, "Computer-and structure-based lead design for epigenetic targets", Bioorg. Med. Chem., Vol. 19, pp. 3605-3615, 2011.
  10. D. P. Christensen, M. Dahllof, M. Lundh, D. N. Rasmussen, M. D. Nielsen, N. Billestrup, L. G. Grunnet, and T. M. Poulsen, "Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus", doi: 10.2119/molmed.2011.00021
  11. S. Balasubramanian, J. Ramos, W. Luo, M. Sirisawad, E. Verner, and J. J. Buggy, "A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas Leukemia 22", doi: 10.1038/leu.2008.9
  12. H. S. Suh, S. Choi, P. Khattar, N. Choi, and S. C. Lee, "Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes", J. Neuroimmune Pharmacol., Vol. 5, pp. 521-32, 2010.
  13. F. Miao, I. G. Gonzalo, L. Lanting, and R. Natarajan, "In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions", J. Biol. Chem., Vol. 279, pp. 18091-18097, 2004.
  14. N. Shanmugam, M. A. Reddy, M. Guha, and R. Natarajan, "High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells", Diabetes, Vol. 52, pp. 1256-64, 2003.
  15. M. A. Halili, M. R. Andrews, L. I. Labzin, K. Schroder, G. Matthias, C. Cao, E. Lovelace, R. C. Reid, G. T. Le, D. A. Hume, K. M. Irvine, P. Matthias, D. P. Fairlie, and M. J. Sweet, "Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS", J. Leukoc. Biol., Vol. 87, pp. 1103-14, 2010.
  16. F. Leoni, G. Fossati, E. C. Lewis, J. K. Lee, G. Porro, P. Pagani, D. Modena, M. L. Moras, P. Pozzi, L. L. Reznikov, B. Siegmund, G. Fantuzzi, C. A. Dinarello, and Paolo Mascagni, "The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo", Mol. Med., Vol. 11, pp. 1-15, 2005.
  17. M. A. Halili, M. R. Andrews, M. J. Sweet, and D. P. Fairlie, "Histone deacetylase inhibitors in inflammatory disease", Curr. Top. Med. Chem., Vol. 9, pp. 309-319, 2009.
  18. I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, "Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis", J. Mol. Biol., Vol. 338, pp. 17-31, 2004.
  19. C. Choudhary, C. Kumar, F. Gnad , M. L. Nielsen, M. Rehman, T. C. Walther, J. V. Olsen, and M. Mann, "Lysine acetylation targets protein complexes and co-regulates major cellular functions", Science, Vol. 325, pp. 834-840, 2009.
  20. A. Vannini, C. Volpari, P. Gallinari, P. Jones, M. Mattu, A. Carfi, R. D. Francesco, C. Steinkuhler, and S. D. Marco, "Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex", EMBO reports, Vol. 8, pp. 9, 2007.
  21. S. Timmermann, H. Lehrmann, A. Polesskaya, and A. Harel-Bellan, "Histone acetylation and disease", Cell. Mol. Life Sci., Vol. 58, pp. 728-736, 2001.
  22. E. D. Gennaro, F. Bruzzese1, M. Caraglia, A. Abruzzese, and A. Budillon, "Acetylation of proteins as novel target for antitumor therapy", Amino Acids, Vol. 26, pp. 435-441, 2004.
  23. M. Haberland, M. H. Mokalled, R. L. Montgomery, and E. N. Olson, "Epigenetic control of skull morphogenesis by histone deacetylase 8", Gene. Dev., Vol. 23, pp 1625-1630, 2009.
  24. M. Dokmanovic and P. A. Marks, "Prospects: histone deacetylase inhibitors", J. Cell. Biochem., Vol. 96, pp. 293-304, 2005.
  25. B. E. Morrison, N. Majdzadeh, and S. R. D. Mello, "Histone deacetylases: Focus on the nervous system", Cell. Mol. Life Sci., Vol. 64, pp. 2258-2269, 2007.
  26. T. A. McKinsey, "Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart", J. Mol. Cell. Cardiol., Vol. 51, pp. 491-496, 2011.
  27. D. M. Fass, S. A. Reis, B. Ghosh, K. M. Hennig, N. F. Joseph d, W. N. Zhao, T. J.F. Nieland, J. S. Guan, C. E. G. Kuhnle, W. Tang, D. D. Barker, R. Mazitschek, S. L. Schreiber, L. H. Tsai, and S. J. H. Crebinostat, "A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity", Neuropharmacology, Vol. 64, pp. 81-96, 2013.
  28. X. Wanga, X. Weia, Q. Pangb, and F. Yia, "Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus", Acta Pharmaceutica Sinica B, Vol. 2, pp. 387-395, 2012.
  29. T. Suzuki, A. Matsuura, A. Kouketsu, H. Nakagawa, and N. Miyata, "Identification of a potent nonhydroxamate histone deacetylase inhibitor by mechanism-based drug design", Bioorg. Med. Chem. Lett., Vol. 15, pp. 331-335, 2005.
  30. M. R. Shakespear, M. A. Halili, K. M. Irvine, D. P. Fairlie, and Matthew J. Sweet, "Histone deacetylases as regulators of inflammation and immunity", Trends Immunol., Vol. 32, pp. 335-343, 2011.
  31. O. Witt and R. Lindemann "HDAC inhibitors: Magic bullets, dirty drugs or just another targeted therapy", Cancer Lett., Vol. 280, pp. 123-124, 2009.
  32. T. Suzuki, A. Kouketsu, A. Matsuura, A. Kohara, S. I. Ninomiya, K. Kohdaa, and Naoki Miyataa, "Thiol-based SAHA analogues as potent histone deacetylase Inhibitors", Bioorg. Med. Chem. Lett., Vol. 14, pp. 3313-3317, 2004.
  33. S. E. Choi, S. V.W. Weerasinghe, and M. K. H. Pflum, "The structural requirements of histone deacetylase inhibitors: suberoylanilide hydroxamic acid analogs modified at the C3 position display isoform selectivity", Bioorg. Med. Chem. Lett., Vol. 21, pp. 6139-6142, 2011.
  34. D. Ling, G. M. Marshall, P. Y. Liu, N. Xu, C. A. Nelson, S. E. Iismaa, and T. Liu, "Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase", Eur. J. Cancer, Vol. 48, pp. 3278-3287, 2012.
  35. H. Wang, Z. Y. Lim, Y. Zhou, M. Ng, T. Lu, K. Lee, K. Sangthongpitag, K. C. Goh, X. Wangb, X. Wub, H. H. Khng, S. K. Goh, W. C. Ong, Z. Bonday, and E. T. Sun, "A acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: synthesis, SAR, and in vivo antitumor activity", Bioorg. Med. Chem. Lett., Vol. 20, pp. 3314-3321, 2010.
  36. A. Wahhab, D. Smil, A. Ajamian, M. Allan, Y. Chantigny, E. Therrien, N. Nguyen, S. Manku, S. Leit, J. Rahil, A. J. Petschner, A. H. Lu, A. Nicolescu, S. Lefebvre, S. Montcalm, M. Fournel, T. P. Yan, Z. Li, J. M. Besterman, and R. Deziel, "Sulfamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 336-340, 2009.
  37. S. Manku, M. Allan, N. Nguyen, A. Ajamian, J. Rodrigue, E. Therrien, J. Wang, T. Guo, J. Rahil, A. J. Petschner, A. Nicolescu, S. Lefebvre, Z. Li, M. Fournel, J. M. Besterman, R. Deziel, and A. Wahhab, "Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 1866-1870, 2009.
  38. B. Chen, P. A. Petukhov, M. Jung, A. Velena, E. Eliseeva, A. Dritschilob, and A. P. Kozikowski, "Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 15, pp. 1389-1392, 2005.
  39. O. Moradei, S. Leit, N. Zhou, S. Frechette, I. Paquin, S. Raeppel, F. Gaudette, G. Bouchain, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, Z. Li, J. Rahil, A. R. MacLeod, J. M. Bestermanb, and Daniel Delormea, "Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: Novel classes of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 16, pp. 4048-4052, 2006.
  40. I. Paquin, S. Raeppel, S. Leit, F. Gaudette, N. Zhou, O. Moradei, O. Saavedra, N. Bernstein, F. Raeppel, G. Bouchain, S. Frechette, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, M. F. Robert, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, J. Rahil, A. R. MacLeod, J. M. Besterman, Z. Lib, and Daniel Delorme, "Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 18, pp. 1067-1071, 2008.

Cited by

  1. Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists vol.8, pp.4, 2015,
  2. Docking Study of Human Galactokinase Inhibitors vol.8, pp.4, 2015,
  3. 3D-QSAR Studies on 2-(indol-5-yl)thiazole Derivatives as Xanthine Oxidase (XO) Inhibitors vol.8, pp.4, 2015,