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Abstract
The Weibull family of lifetime distributions play a fundamental role in reliability engineering and life testing

problems. This paper investigates the potential usefulness of transmuted new generalized Weibull (TNGW)
distribution for modeling lifetime data. This distribution is an important competitive model that contains twenty-
three lifetime distributions as special cases. We can obtain the TNGW distribution using the quadratic rank
transmutation map (QRTM) technique. We derive the analytical shapes of the density and hazard functions for
graphical illustrations. In addition, we explore some mathematical properties of the TNGW model including
expressions for the quantile function, moments, entropies, mean deviation, Bonferroni and Lorenz curves and
the moments of order statistics. The method of maximum likelihood is used to estimate the model parameters.
Finally the applicability of the TNGW model is presented using nicotine in cigarettes data for illustration.

Keywords: new generalized Weibull distribution, moment estimation, entropies, order statistics,
maximum likelihood estimation

1. Introduction

The probabilistic modeling approach is a traditional device to explain real world scenarios in many
areas of research. Therefore, any probabilistic model defined on the positive real line can be consid-
ered as a lifetime model. The most popular model is the Weibull distribution that has been extensively
used over the past decades to model lifetime data in reliability engineering, astronomy, medicine, psy-
chology, botany, zoology, agriculture, fisheries and actuaries. The two-parameter Weibull distribution
was introduced by Swedish physicist Waloddi Weibull in 1937 and has proved to be a versatile model
with a wide range of applicability for analyzing lifetime data. The beauty of this model is the ability
to provide reasonably accurate failure analysis and failure forecasts with extremely small samples,
Abernethy (2000). Ever since, it has been extensively used for analyzing lifetime data. Many authors
have introduced new distributions to model bathtub shaped instantaneous failure rates.

For example, Mudholkar and Srivastava (1993) proposed the exponentiated Weibull distribution to
analyze failure data. Reliability analysis using an additive Weibull and extended Weibull models with
bathtub-shaped failure rate functions were introduced by Xie and Lai (1996) and Xie et al. (2002).
Nadarajah and Kotz (2006) introduced four exponentiated type distributions: exponentiated gamma,
exponentiated Weibull, exponentiated Gumbel, and exponentiated Fréchet distributions. Sarhan and
Zaindin (2009) introduced modified Weibull distribution. Cordeiro et al. (2013) introduced beta ex-
ponentiated Weibull distribution and studied various statistical properties with applications. Cordeiro
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et al. (2014) proposed an increasing five-parameter Kumaraswamy modified Weibull distribution, de-
creasing bathtub shaped and unimodal hazard rate functions and various statistical properties with ap-
plications. A beta modified Weibull distribution was introduced by Silva et al. (2010), which includes
seventeen distributions as special cases and the study of various structural properties with application.
Recently Zaindin and Sarhan (2011) proposed a new generalized Weibull (NGW) distribution. The
cumulative distribution function (cdf) of the NGW distribution is given by (for x > 0)

G(x) =
[
1 − exp

{
−αx − ηxθ

}]ϕ
, (1.1)

where θ, ϕ > 0 are the shape parameters and α, η > 0 are the scale parameters. The probability density
function corresponding to (1.1) is given by

g(x) = ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

} [
1 − exp

{
−αx − ηxθ

}]ϕ−1
. (1.2)

The four-parameter NGW distribution generalizes the eleven lifetime distributions with an in-
creasing and decreasing bathtub shaped hazard rate function.

Let F1 and F2 be the cdfs of two lifetime distributions with a common sample space, then we
can define the pair of general rank transmutation proposed by Shaw and Buckley (2009) as GR12 (u) =
F2(F−1

1 (u)) and GR21 (u) = F1(F−1
2 (u)). The functions GR12 (u) and GR21 (u) both map the unit interval

I = [0, 1] into itself, and are mutual inverses under suitable assumptions. Naturally, they satisfy
GRi j (0) = 0 and GRi j (1) = 1 (for i, j = 1, 2). The quadratic rank transmutation map (QRTM) is defined
by GR12 (u) = u + λu(1 − u), |λ| ≤ 1 from which it follows F2(x) = (1 + λ) F1(x) − λ F1(x)2 and the
corresponding probability density function (pdf) is f2(x) = f1(x){(1+ λ)− 2λ F1(x)}, where f1(x) and
f2(x) are the pdfs corresponding to the cdfs of F1(x) and F2(x) respectively. For more details about the
QRTM approach and some general results, see Shaw and Buckley (2009), Bourguignon et al. (2016).

This class of transmuted distributions received considerable attention after the recent work of
Shaw and Buckley (2009), which provided greater flexibility of its tails and can be applied in many
areas of reliability studies. A distribution can be made more flexible by adding another parameter.
The QRTM technique is one way to do so. It shows promise by expanding the range of available tail
properties, as can be seen in improved goodness-of-fit results, even after adjusting for the additional
parameter via measures such as the AIC. Aryal and Tsokos (2011) used this technique to propose
the transmuted Weibull distribution as well as derived some mathematical properties with application.
Recently Khan and King (2013a, 2013b) introduced the transmuted modified Weibull, transmuted
generalized inverse Weibull distributions and formulated some of its properties with application. Khan
and King (2014), Khan et al. (2014) studied the flexibility of transmuted inverse Weibull distributions
and studied various structural properties with an application to survival data. Khan and King (2015)
recently proposed the transmuted modified inverse Rayleigh distribution and formulated some of its
properties with application to real data. Elbatal and Aryal (2013) proposed the transmuted additive
Weibull distribution with application to reliability data. Merovci (2013) proposed the transmuted
Rayleigh distribution. Tian et al. (2014) introduced and studied the transmuted linear exponential
distribution with application to reliability data. Sharma et al. (2014) have also proposed a transmuted
inverse Rayleigh distribution with application to survival data that represents the primary motivation
for studying the transmuted new generalized Weibull (TNGW) distribution for modeling survival
data and also investigate the shapes, skewness, kurtosis and tail variations using simulation. The
TNGW distribution is also called the transmuted exponentiated modified Weibull distribution recently
proposed by Ashour and Eltehiwy (2013). We can obtain the TNGW distribution using the QRTM
technique by taking G(x) to be the cdf of the NGW distribution as the baseline model. This research
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investigates the potential usefulness of the TNGW distribution by adding the transmuted parameter
λ that offers more flexibility to model lifetime data. We study several mathematical properties of the
five-parameter TNGW distribution with application to nicotine in cigarettes data.

The structure of this paper is as follows. In Section 2, we present the analytical shapes of the
density and hazard functions. Some statistical properties such as the quantile functions, moment
estimation and moment generating function are addressed in Section 3. Entropies, mean deviation,
Bonferroni and Lorenz curves are derived in Section 4. In Section 5, we derive the density function
and moments of order statistics. Maximum likelihood estimates (MLEs) of the unknown parameters
are discussed in Section 6. A simulation study is also conducted to examine the bias and mean
square error of maximum likelihood estimators in Section 6. Section 7 addresses the potentiality of
the TNGW model by means of the nicotine in cigarettes data and associated inferences, followed by
concluding remarks.

2. Transmuted new generalized Weibull distribution

A positive random variable X has TNGW distribution with parameters α, θ, η, ϕ > 0 and the trans-
muting parameter |λ| ≤ 1, x > 0. Using the QRTM technique, we can obtain five-parameter TNGW
distribution defined by

f (x) =
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
v2(x)[

1 − exp
{−αx − ηxθ

}]1−ϕ , (2.1)

vg(x) =
{
1 + λ − gλ

[
1 − exp

{
−αx − ηxθ

}]ϕ}
, g = 1, 2. (2.2)

The cdf corresponding to (2.1) is given by

F(x) =
[
1 − exp

{
−αx − ηxθ

}]ϕ
v1(x). (2.3)

Here vg(x) is used to simplify the presentation of this density function. The parameter α is the
location parameter, the parameter η controls the scale of the distribution, whereas the parameters θ
and ϕ control the shape of the distribution respectively. The parameter λ is a kind of transmuting
parameter that provides more flexibility in the TNGW model. The TNGW distribution is the extended
form of the NGW distribution and reduces to the base model when the parameter λ = 0. If X is a
random variable with density function (2.1), we write X ∼ TNGW(x;α, θ, η, ϕ, λ). The associated
reliability and hazard rate functions follow from (2.1) and (2.3) are defined by

R(x) = 1 −
[
1 − exp

{
−αx − ηxθ

}]ϕ
v1(x), (2.4)

and

h(x) =
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
v2(x)[

1 − exp
{−αx − ηxθ

}]1−ϕ [
1 − [

1 − exp
{−αx − ηxθ

}]ϕ v1(x)
] . (2.5)

Figure 1 illustrates the shapes of the TNGW pdf with some selected choice of parameters. When
the cdf of the TNGW distribution has zero value then it represents no failure components. Figure 2
illustrates the hazard function of the TNGW distribution with a different choice of parameters. The
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Figure 1: Plots of the TNGW pdf for some selected values of the parameters.

distribution has increasing, decreasing and constant behaviors for hazard rates. The TNGW distribu-
tion provides a wide usage of the Weibull family of lifetime distributions. The TNGW model can be
used in more complex situations and provides more flexibility in real world scenarios. The TNGW
distribution contains several well-known distributions as special cases several well-known distribu-
tions. Twenty-three distributions included as special cases of the TNGW distribution are displayed in
Table 1.

3. Moments and quantiles

This section presents the quantile analysis, kth moment and moment generating function of the TNGW
distribution.
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Figure 2: Plots of the TNGW hazard function for some selected values of the parameters.

Table 1: Sub-models of the transmuted NGW distribution

Distribution α θ η ϕ λ

TNGE - 1 - - -
TNGR - 2 - - -
TMW - - - 1 -
TMR - 2 - 1 -
TME - 1 - 1 -
TGW 0 - - - -
TGR 0 2 - - -
TGE 0 1 - - -
TW 0 - - 1 -
TR 0 2 - 1 -
TE 0 1 - 1 -

NGW - - - - 0
NGR - 2 - - 0
NGE - 1 - - 0
MW - - - 1 0
MR - 2 - 1 0
ME - 1 - 1 0
GW 0 - - - 0
GR 0 2 - - 0
GE 0 1 - - 0
W 0 - - 1 0
R 0 2 - 1 0
E 0 1 - 1 0

T = transmuted; M = modified; N = new; G = generalized; W =Weibull; R = Rayleigh; E = exponential.

3.1. Quantile and median

The quantile xq of the TNGW distribution is the real solution of the following equation

ηxθq + αxq + ln

1 −
 (1 + λ) −

√
(1 + λ)2 − 4λq
2λ


1
ϕ

 = 0. (3.1)
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The above equation (3.1) has no closed form solution in xq, in general the TNGW model contains
twenty-three quantile models as special cases. For the non-linear structure, we can obtain these quan-
tile models by using numerical method such as Newton-Raphson technique. Among twenty-three
quantile models, we formulate the mathematical expressions for eleven quantile models for the trans-
muted distributions in closed form solution as special cases by substituting the parametric values in
equation (3.1) as given by

U(ϕ, λ, q) = ln

1 −
 (1 + λ) −

√
(1 + λ)2 − 4λq
2λ


1
ϕ

 . (3.2)

1. The qth quantile of the TNGE(x;α, η, ϕ, λ) by substituting θ = 1

xq =
−1
α + η

U(ϕ, λ, q).

2. The qth quantile of the TNGR(x;α, η, ϕ, λ) by substituting θ = 2

xq =
−α +

√
α2 − 4ηU(ϕ, λ, q)

2η
.

3. The qth quantile of the TMW(x;α, θ, η, λ) by substituting ϕ = 1

ηxθq + αxq + U(1, λ, q) = 0.

4. The qth quantile of the TMR(x;α, η, λ) by substituting ϕ = 1, θ = 2

xq =
−α +

√
α2 − 4ηU(1, λ, q)

2η
.

5. The qth quantile of the TME(x;α, ϕ, λ) by substituting ϕ = 1, θ = 1

xq =
−1
α + η

U(1, λ, q).

6. The qth quantile of the TGW(x; θ, η, ϕ, λ) by substituting α = 0

xq =

{
−1
η

U(ϕ, λ, q)
} 1

θ

.

7. The qth quantile of the TGR(x; η, ϕ, λ) by substituting α = 0, θ = 2

xq =

√
−1
η

U(ϕ, λ, q).
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Figure 3: Median and B-life of the TNGW distribution.

8. The qth quantile of the TGE(x; η, ϕ, λ) by substituting α = 0, θ = 1

xq =
−1
η

U(ϕ, λ, q).

9. The qth quantile of the TW(x; θ, η, λ) by substituting α = 0, ϕ = 1

xq =

(
U(1, λ, q)

η

) 1
θ

.

10. The qth quantile of the TR(x; η, λ) by putting α = 0, ϕ = 1, θ = 2

xq =

√
U(1, λ, q)

η
.

11. The qth quantile of the TE(x; η, λ) by putting α = 0, ϕ = 1, θ = 1

xq =
U(1, λ, q)

η
.

By substituting q = 0.5 in (3.1) we obtain the median of the TNGW distribution. Figure 3 shows the
median life to illustrate the effect of transmuting parameter λ for some selected choice of parameters.
Figure 3 also shows the B-life (or percentile life) of the TNGW distribution as a function of the
shape parameter ϕ. We evaluate the performance of Bowley skewness and Moors kurtosis using the
measure based on quantiles as a function of the transmuting parameter λ. Graphical representations
of the Bowley skewness and Moors kurtosis show the three phases of these plots and are displayed in
Figure 4, respectively.
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Figure 4: Skewness and kurtosis of the TNGW for different values of λ.

3.2. Moments

Theorem 1. If X has the T NGW(x;α, θ, η, ϕ, λ) with |λ| ≤ 1, then the kth moment of X is

µ́k = (1+λ)
∞∑

m,n=0

(
ϕ−1

m

)
ηnϕ(−1)m+n

n!(m + 1)−nψ(α, θ, η,m, n, k) − 2λ
∞∑

m,n=0

(
2ϕ−1

m

)
ηnϕ(−1)m+n

n!(m + 1)−nψ(α, θ, η,m, n, k),

where

ψ(α, θ, η,m, n, k) =
αΓ (k + θn + 1)
(α(m + 1))k+θn+1 +

θηΓ (k + θn + θ)
(α(m + 1))k+θn+θ .

Proof: The kth moment of the TNGW distribution is as follows

µ́k =

∫ ∞

0
xk
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
v2(x)[

1 − exp
{−αx − ηxθ

}]1−ϕ dx

using (2.1) and (2.2) the above integral can be written as

µ́k = (1 + λ)
∫ ∞

0
xk
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
[
1 − exp

{−αx − ηxθ
}]1−ϕ dx − 2λ

∫ ∞

0
xk
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
[
1 − exp

{−αx − ηxθ
}]1−2ϕ dx.

Using the binomial expansion the above equation reduces to

µ́k = (1 + λ)
∞∑

m=0

(
ϕ − 1

m

)
ϕα(−1)m

∫ ∞

0
xk exp

{
−αx(m + 1) − ηxθ(m + 1)

}
dx

+ (1 + λ)
∞∑

m=0

(
ϕ − 1

m

)
ϕηθ(−1)m

∫ ∞

0
xk+θ+1 exp

{
−αx(m + 1) − ηxθ(m + 1)

}
dx
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Table 2: Moments values of the TNGW distribution

(α, θ, η, ϕ) λ µ́1 µ́2 µ́3 µ́4

1, 0.5, 1, 1

−1.0 0.7365 1.0861 2.4618 7.6323
−0.5 0.5954 0.8382 1.8687 5.7545

0.5 0.5000 0.5555 1.0000 2.5185
1.0 0.3333 0.2222 0.2222 0.2963

1, 1, 1, 1

−1.0 0.7500 0.8750 1.4062 2.9062
−0.5 0.6250 0.6875 1.0781 2.2031

0.5 0.3750 0.3125 0.4218 0.7968
1.0 0.2500 0.1250 0.0937 0.0938

1, 2, 2, 2

−1.0 0.7656 0.6588 0.6263 0.6499
−0.5 0.6846 0.5535 0.5066 0.5129

0.5 0.5224 0.3429 0.2671 0.2391
1.0 0.4414 0.2376 0.1474 0.1022

2, 3, 2, 3

−1.0 0.7331 0.5810 0.4918 0.4409
−0.5 0.6650 0.4975 0.4057 0.3546

0.5 0.5288 0.3305 0.2336 0.1821
1.0 0.4608 0.2470 0.1475 0.0957

Table 3: Moments based measures of the TNGW distribution

(α, θ, η, ϕ) λ Mean Var CV CS CK

1, 0.5, 1, 1

−1.0 0.7365 0.5436 1.0011 2.1481 10.258
−0.5 0.5954 0.4836 1.1681 2.3592 11.583

0.5 0.5000 0.3055 1.1054 2.4681 12.475
1.0 0.3333 0.1111 1.0001 2.0000 9.0027

1, 1, 1, 1

−1.0 0.7500 0.3125 0.7453 1.6096 7.0810
−0.5 0.6250 0.2968 0.8717 1.7144 7.5045

0.5 0.3750 0.1718 1.1055 2.4658 12.472
1.0 0.2500 0.0625 1.0000 1.9968 9.0256

1, 2, 2, 2

−1.0 0.7656 0.0726 0.3521 0.5448 3.4351
−0.5 0.6846 0.0848 0.4254 0.4669 3.2145

0.5 0.5224 0.0699 0.5065 0.8010 3.8797
1.0 0.4414 0.0427 0.4685 0.5392 3.1849

2, 3, 2, 3

−1.0 0.7331 0.0435 0.2847 0.2194 3.0218
−0.5 0.6650 0.0552 0.3535 0.1036 2.8772

0.5 0.5288 0.0508 0.4265 0.4384 3.0592
1.0 0.4608 0.0346 0.4040 0.2691 2.7051

CV = coefficient of variation; CS = coefficient of skewness; CK = coefficient of kurtosis.

− 2λ
∞∑

m=0

(
2ϕ − 1

m

)
ϕα(−1)m

∫ ∞

0
xk exp

{
−αx(m + 1) − ηxθ(m + 1)

}
dx

− 2λ
∞∑

m=0

(
2ϕ − 1

m

)
ϕηθ(−1)m

∫ ∞

0
xk+θ+1 exp

{
−αx(m + 1) − ηxθ(m + 1)

}
dx

the above integral yields the following kth moment,

µ́k = (1 + λ)
∞∑

m,n=0

(
ϕ − 1

m

)
ηnϕ(−1)m+n

n!(m + 1)−nψ(α, θ, η,m, n, k)

− 2λ
∞∑

m,n=0

(
2ϕ − 1

m

)
ηnϕ(−1)m+n

n!(m + 1)−nψ(α, θ, η,m, n, k). (3.3)
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�

The important features and characterizations of the TNGW distribution can be studied using equation
(3.3). The values of the first four ordinary moments for some selected choices of parameters are
shown in Table 2. Using ordinary moments, we obtained the mean, variance, coefficient of variation,
coefficient of skewness and coefficient of kurtosis that are displayed in Table 3. The results in these
tables show that as the shape parameters increases as the values of skewness and kurtosis decreases.
These values can be determined numerically by using R and SAS languages.

Theorem 2. If X has the T NGW(x;α, θ, η, ϕ, λ) with |λ| ≤ 1, then the moment generating function
(mg f ) of X is given by

Mx(t) = (1 + λ)
∞∑

r=0

∞∑
p,q=0

(
ϕ − 1

p

)
ηpϕtr(−1)p+q

q!r!(p + 1)−nω(α, θ, η, p, q, r)

− 2λ
∞∑

r=0

∞∑
p,q=0

(
2ϕ − 1

p

)
ηpϕ(−1)p+q

q!r!(p + 1)−nω(α, θ, η, p, q, r),

where

ω(α, θ, η, p, q, r) =
αΓ (r + θq + 1)
(α(p + 1))r+θq+1 +

θηΓ (r + θq + θ)
(α(p + 1))r+θq+θ .

Proof: By definition

Mx(t) = (1 + λ)
∫ ∞

0
etx
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
[
1 − exp

{−αx − ηxθ
}]1−ϕ dx

− 2λ
∫ ∞

0
etx
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
[
1 − exp

{−αx − ηxθ
}]1−2ϕ dx.

Using Taylor series expansions, the above integrals reduce to

Mx(t) = (1 + λ)
∞∑

r=0

∞∑
p=0

(
ϕ − 1

p

)
trϕα(−1)p

r!

∫ ∞

0
xr exp

{
−αx(p + 1) − ηxθ(p + 1)

}
dx

+ (1 + λ)
∞∑

r=0

∞∑
p=0

(
ϕ − 1

m

)
trϕηθ(−1)p

r!

∫ ∞

0
xr+θ+1 exp

{
−αx(p + 1) − ηxθ(p + 1)

}
dx

− 2λ
∞∑

r=0

∞∑
p=0

(
2ϕ − 1

p

)
trϕα(−1)p

r!

∫ ∞

0
xr exp

{
−αx(p + 1) − ηxθ(p + 1)

}
dx

− 2λ
∞∑

r=0

∞∑
p=0

(
2ϕ − 1

p

)
trϕηθ(−1)p

r!

∫ ∞

0
xr+θ+1 exp

{
−αx(p + 1) − ηxθ(p + 1)

}
dx



Transmuted new generalized Weibull distribution 373

the above integral yields the Mx(t) as

Mx(t) = (1 + λ)
∞∑

r=0

∞∑
p,q=0

(
ϕ − 1

p

)
ηpϕtr(−1)p+q

q!r!(p + 1)−nω(α, θ, η, p, q, r)

− 2λ
∞∑

r=0

∞∑
p,q=0

(
2ϕ − 1

p

)
ηpϕ(−1)p+q

q!r!(p + 1)−nω(α, θ, η, p, q, r). (3.4)

�

4. Entropy and mean deviation

The entropy of a random variable X with probability density from the TNGW(x;α, θ, η, ϕ, λ) is a
measure of variation of the uncertainty. The Rényi entropy approaches the Shannon entropy when
ρ → 1. The Rényi (1961) introduced the entropy denoted as, IR(ρ), for X is a measure of variation of
uncertainty and is defined as

IR(ρ) =
1

1 − ρ log
{∫ ∞

0
f (x)ρdx

}
, (4.1)

where ρ > 0 and ρ , 1. The integral in IR(ρ) for the T NGW(x;α, θ, η, ϕ, λ) can be defined by
substituting (2.1) and (2.2) in (4.1) as

IR(ρ) =
1

1 − ρ log


∫ ∞

0

ϕρ
(
α + ηθxθ−1

)ρ
exp

{
−αρx − ηρxθ

}
v2(x)[

1 − exp
{−αx − ηxθ

}]ρ(1−ϕ)

ρ

dx

 ,
the above integral reduces to

IR(ρ) =
1

1 − ρ log


∞∑

i, j,k=0

zϕ,ρ,λ,i, j

∫ ∞

0
xk(θ−1) exp

{
−αx(ρ + j) − ηxθ(ρ + j)

}
dx

 ,
where

zϕ,ρ,λ,i, j = ϕρ
(
ρ
i

) (
ρ
k

) (
ρ(ϕ − 1) + ϕi

j

) (
ηθ

α

)k (
2λ

1 + λ

)i

(−1)i+ j(1 + λ)ραρ.

Finally, we obtain the TNGW Rényi entropy as

IR(ρ) =
ρ

1 − ρ logα +
ρ

1 − ρ log ϕ +
ρ

1 − ρ log(1 + λ)

+
1

1 − ρ log


∞∑

i, j=0

∞∑
k,m=0

(
ρ
i

) (
ρ
k

) (
ρ(ϕ − 1) + ϕi

j

) (
2λ

1 + λ

)i (−1)i+ j+m

m!
V j,k,m

 ,
where

V j,k,m =
ηm(ρ + j)m

α(ρ + j)k(θ−1)−θm+1

(
ηθ

α

)k

Γ (k(θ − 1) − θm − 1) .
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Table 4: Rényi entropy values for the TNGW distribution

(α, θ, η, ϕ) λ ρ = 2 ρ = 3 ρ = 4 ρ = 5

1, 1, 1, 1

−1.0 0.2891 0.2627 0.3698 0.4703
−0.5 0.2833 0.2602 0.3697 0.4741

0.5 0.0828 0.0325 0.0018 −0.0410
1.0 −0.3010 −0.3635 −0.4014 −0.4273

1, 2, 2, 2

−1.0 −0.0321 −0.0636 −0.0827 −0.0958
−0.5 0.0080 −0.0224 −0.0412 −0.0541

0.5 −0.0553 −0.0869 −0.1062 −0.1193
1.0 −0.1415 −0.1697 −0.1872 −0.1993

2, 3, 2, 3

−1.0 −0.1299 −0.1605 −0.1791 −0.1918
−0.5 −0.0745 −0.1045 −0.1230 −0.1358

0.5 −0.0996 −0.1280 −0.1456 −0.1578
1.0 −0.1732 −0.1994 −0.2158 −0.2272

2, 4, 2, 5

−1.0 −0.2356 −0.2674 −0.2867 −0.2998
−0.5 −0.1667 −0.1999 −0.2201 −0.2339

0.5 −0.1502 −0.1806 −0.1994 −0.2124
1.0 −0.2070 −0.2359 −0.2538 −0.2662

The β-or (q-entropy) was introduced by Havrda and Charvát (1967), and is defined as

IH(β) =
1

β − 1

{
1 −

∫ ∞

0
f (x)βdx

}
, (4.2)

where β > 0 and β , 1. Suppose X has the TNGW distribution then by substituting (2.1) and (2.2) in
(4.2), we obtain

IH(β) =
1

β − 1

1 −
∫ ∞

0

ϕβ
(
α + ηθxθ−1

)β
exp

{
−αβx − ηβxθ

}
v2(x)[

1 − exp
{−αx − ηxθ

}]β(1−ϕ)

β

dx

 ,
the above integral yields the TNGW β-entropy as

IH(β) =
1

β − 1

1 −
∞∑

i, j=0

∞∑
k,m=0

ξϕ,β,λ,i, j(−1)mηm(β + j)m

m!α(β + j)k(θ−1)−θm+1 Γ (k(θ − 1) − θm − 1)

 ,
where

ξϕ,β,λ,i, j = (ϕα)β
(
β
i

) (
β
k

) (
β(ϕ − 1) + ϕi

j

) (
ηθ

α

)k (
2λ

1 + λ

)i

(−1)i+ j(1 + λ)β.

Table 4 lists the values of Rényi entropy of the TNGW distribution for selected values of the
parameters. Table 5 lists the values of β-entropy of the TNGW distribution for selected values of the
parameters.

If X has the TNGW distribution, then we can derive the mean deviation about the mean and about
the median from the following equations

δ1 =

∫ ∞

0
|x − µ| f (x)dx and δ2 =

∫ ∞

0
|x − M| f (x)dx.
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Table 5: β-entropy values for the TNGW distribution

(α, θ, η, ϕ) λ β = 2 β = 3 β = 4 β = 5

1, 1, 1, 1

−1.0 0.3333 0.2334 0.1809 0.1484
−0.5 0.2500 0.1584 0.1107 0.0809

0.5 −0.4166 −0.8916 −1.7369 −3.4587
1.0 −1.0000 −2.1666 −5.0000 −12.550

1, 2, 2, 2

−1.0 −0.0767 −0.1703 −0.2571 −0.3545
−0.5 0.0183 −0.0545 −0.1096 −0.1614

0.5 −0.1359 −0.2463 −0.3606 −0.5000
1.0 −0.3850 −0.5926 −0.8816 −1.3175

2, 3, 2, 3

−1.0 −0.3488 −0.5468 −0.8150 −1.2134
−0.5 −0.1872 −0.3089 −0.4464 −0.6238

0.5 −0.2578 −0.4016 −0.5779 −0.8188
1.0 −0.4899 −0.7526 −1.1468 −1.7771

2, 4, 2, 5

−1.0 −0.7204 −1.2129 −2.0811 −3.7062
−0.5 −0.4680 −0.7555 −1.1914 −1.9056

0.5 −0.4131 −0.6487 −0.9883 −1.5179
1.0 −0.6107 −0.9816 −1.5909 −2.6526

The mean µ is given in equation (3.3) and the median M is obtained from equation (3.1). These
measures are calculated using the relationships:

δ1 = 2[µF(µ) − ψ(µ)] and δ2 = µ − 2ψ(M).

The quantity ψ(q) is used to determine the Bonferroni and Lorenz curves, which are very useful
in econometrics and finance, reliability and survival analysis, demography, insurance and medical
sciences. For a given probability p, they can be constructed from (3.1) and B(P) = ψ(q)/Pµ and
L(P) = ψ(q)/µ.

ψ(q) = (1 + λ)
∞∑

i, j=0

(
ϕ − 1

i

)
η jϕ(−1)i(i + 1) j

j!(α(i + 1))θ j+2 Uα,θ,η,i, j

− 2λ
∞∑

i, j=0

(
2ϕ − 1

i

)
η jϕ(−1)i(i + 1) j

j!(α(i + 1))θ j+2 Uα,θ,η,i, j, (4.3)

where

Uα,θ,η,i, j = αγ (θ j + 2, αq(i + 1)) +
θη

[α(i + 1)]θ−1 γ (θ j + θ + 1, αq(i + 1)) .

5. Order statistics

The density of the rth order statistic X(r) of a random sample drawn from the TNGW distribution with
|λ| ≤ 1, with the density function of X(r) is given by

fr:n(x) =
(F(x))r−1 (1 − F(x))n−r f (x)

B(r, n − r + 1)
, x > 0, (5.1)

where B(r, n − r + 1) is the Beta function and it is a normalizing constant, by substituting (2.1) and
(2.3) in (5.1), we obtain

fr:n(x) = n
(

n − 1
r − 1

) n−r∑
i=0

(
n − r

i

)
(−1)iVr:i(x),
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where

Vr:i(x) =
ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

}
v1(x)r+i−1v2(x)[

1 − exp
{−αx − ηxθ

}]1−ϕ(r+i) .

The pdf of rth order statistics of the TNGW distribution reduces to the combining terms as

fr:n(x) = n
(

n − 1
r − 1

) n−r∑
i=0

∞∑
j,k=0

(−1)i+ j+kUi, j,kzk(x), (5.2)

where

Ui, j,k =

(
n − r

i

) (
r + i − 1

j

) (
ϕ(r + i + j) − 1

k

)
(1 + λ)r+i−1

(
λ

1 + λ

) j

,

and

zk(x) = ϕ
(
α + ηθxθ−1

)
exp

{
−αx(k + 1) − ηxθ(k + 1)

}
v2(x).

Using (5.2), the S th moment of the rth order statistics X(r) is given by

µn:r
s =

n−r∑
i=0

∞∑
j=0

ψi, j

(1 + λ)
∞∑

k,m=0

(−1)k+mηmτk,mci, j,k,0

(k + 1)−mm!
− 2λ

∞∑
k,m=0

(−1)k+mηmτk,mci, j,k,1

(k + 1)−mm!

 ,
where ci, j,k,g =

(
ϕ(r+i+ j+g)−1

k

)
, g = 0, 1

ψi, j = n
(

n − 1
r − 1

) (
n − r

i

) (
r + i − 1

j

)
(1 + λ)r+i−1

(
λ

1 + λ

) j

,

τk,m =
αΓ (S + θm + 1)
(α(k + 1))S+θm+1 +

ηθΓ (S + θm + θ)
(α(k + 1))S+θm+θ .

6. Maximum likelihood estimation

Consider the random samples x1, x2, . . . , xn consisting of n observations from the TNGW distribution
and Θ = (α, θ, η, ϕ, λ)T be the parameter vector. The log-likelihood function of (2.1) is given by

log L = n log ϕ +
n∑

i=1

log
(
α + ηθxθ−1

i

)
− α

n∑
i=1

xi − η
n∑

i=1

xθi + (ϕ − 1)
n∑

i=1

log
{
1 − exp

(
−αxi − ηxθi

)}
+

n∑
i=1

log
{
1 + λ − 2λ

[
1 − exp

{
−αxi − ηxθi

}]ϕ}
. (6.1)
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The components of the score function can be obtained by differentiating (6.1) with respect to α, θ, η, ϕ
and λ, then equating it to zero, we obtain

∂ log L
∂α

=

n∑
i=1

(
α + ηθxθ−1

i

)−1
+ (ϕ − 1)

n∑
i=1

xi exp
(
−αxi − ηxθi

){
1 − exp

(
−αxi − ηxθi

)}
−

n∑
i=1

xi −
n∑

i=1

2λϕxi

[
1 − exp

{
−αxi − ηxθi

}]ϕ−1
exp

{
−αxi − ηxθi

}{
1 + λ − 2λ

[
1 − exp

{
−αxi − ηxθi

}]ϕ} ,

∂ log L
∂θ

=

n∑
i=1

η
(
α + ηθxθ−1

i

)−1
xθ−1

i

(
θ(θ − 1)

xi
+ 1

)
+ η(ϕ − 1)

n∑
i=1

exp
(
−αxi − ηxθi

)
xθi log xi{

1 − exp
(
−αxi − ηxθi

)}
− η

n∑
i=1

xθi log xi −
n∑

i=1

2ληϕ
[
1 − exp

{
−αxi − ηxθi

}]ϕ−1
exp

{
−αxi − ηxθi

}
xθi log xi{

1 + λ − 2λ
[
1 − exp

{
−αxi − ηxθi

}]ϕ} ,

∂ log L
∂η

=

n∑
i=1

θxθ−1
i

(
α + ηθxθ−1

i

)−1
+ (ϕ − 1)

n∑
i=1

xθi exp
(
−αxi − ηxθi

){
1 − exp

(
−αxi − ηxθi

)}
−

n∑
i=1

xθi −
n∑

i=1

2λϕxθi
[
1 − exp

{
−αxi − ηxθi

}]ϕ−1
exp

{
−αxi − ηxθi

}{
1 + λ − 2λ

[
1 − exp

{
−αxi − ηxθi

}]ϕ} ,

∂ log L
∂ϕ

=
n
ϕ
+

n∑
i=1

{
1− exp

(
−αxi − ηxθi

)}
− 2λ

n∑
i=1

[
1 − exp

{
−αxi − ηxθi

}]ϕ
log

[
1− exp

{
−αxi− ηxθi

}]{
1 + λ − 2λ

[
1− exp

{
−αxi − ηxθi

}]ϕ} ,

and

∂ log L
∂λ

=

n∑
i=1

1 − 2
[
1 − exp

{
−αxi − ηxθi

}]ϕ{
1 + λ − 2λ

[
1 − exp

{
−αxi − ηxθi

}]ϕ} ,
respectively. We obtain the analytical expressions for the MLEs of a five-parameter score vector,
yields the ML estimators α̂, θ̂, η̂, ϕ̂ and λ̂ of the TNGW distribution. These parameters can be esti-
mated by using the BFGS method in R package “Adequacy Model” (http://www.r-project.org). We
required the observed information matrix for the interval estimation and hypothesis testing. All the
second order derivatives exist for the five-parameter TNGW distribution. Thus we have the observed
information matrix as (

α̂, θ̂, η̂, ϕ̂, λ̂
)T ∼ N5

{
(α, θ, η, ϕ, λ)T ,K(Θ)−1

}
,

where K(Θ)−1 is the variance covariance matrix of the unknown parameters having the components
Kϑiϑ j = ∂2 log L/∂ϑiϑ j, i, j = 1, 2, 3, 4, 5. The asymptotic multivariate normal N5{0,K(Θ)−1} dis-
tribution can be used to construct the confidence intervals for each parameters ϑ. An approximate
100(1 − γ)% asymptotic confidence intervals (ACI) for each parameter α, θ, η, ϕ and λ can be deter-
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Figure 5: Plots of the TNGW densities for simulated data sets.

mined as

ACIr =
(
ϑ̂r − Z γ

2

√
−kr,r, ϑ̂r + Z γ

2

√
−kr,r

)
,

where −kr,r represents the elements of the observed information matrix and Zγ/2 is the upper γth

percentile of the standard normal distribution.
We conducted the simulation study to evaluate the performance of MLEs with respect to the

sample size for the TNGW distribution. By using equation (3.1), we generated samples from the
TNGW distribution for different sizes n = 50, 100, 200, 400, 800 for the fixed choice of the parameters
α = 0.5, θ = 2, η = 1, ϕ = 0.5 and λ = 0.5. In the context of the computational complexities, the
quantile model involves non-linear equation and needs to be calculated by some iterative process. The
simulation process is repeated 500 times using the BFGS optimization method in R. We fitted the
TNGW distribution for these samples using the maximum likelihood method. Table 6 describes the
results for five different parameter values α, θ, η, ϕ, λwith their corresponding standard errors, bias and
mean square error (MSE). Table 4 reports that the simulated results are quite promising with respect
to the increasing sample size. The histogram of two simulated data sets for some selected values of
parameters based on 1,000 observations are displayed in Figure 5.

7. Application

This section illustrates the usefulness of the TNGW distribution with nicotine cigarette data. The data
set consists of 396 observations of nicotine content in milligrams in cigarettes for several cigarettes
brands in 1995. The data was obtained from the Federal Trade Commission (FTC), an indepen-
dent agency of the US government, whose main mission is the promotion of consumer protection.
The report entitled “Tar, Nicotine and Carbon Monoxide of the Smoke of 1249 varieties of domestic
cigarettes for the Year 1995” at FTC (1998) consists of data sets and information about the source of
data, smoker behavior and beliefs about nicotine, tar and carbon monoxide contents in cigarettes. The
model parameters are estimated using the method of maximum likelihood and five goodness-of-fit
statistics are used to compare TNGW distribution with other five lifetime models, their associated
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Table 6: Monte Carlo simulation results based on MLE, S.E, Bias and MSE for the TNGW distribution

n Parameter Mean S.E Bias MSE
α 0.1009 0.7272 −0.3991 0.6881
θ 1.6416 0.8418 −0.3584 0.8371

50 η 1.5098 0.9281 0.5098 1.1213
ϕ 0.4551 0.3787 −0.0449 0.1454
λ 0.4438 0.6967 −0.0562 0.4885
α 0.6365 0.8028 0.1365 0.6631
θ 1.7085 0.5387 −0.2915 0.3752

100 η 0.7689 0.7212 −0.2311 0.5735
ϕ 0.6048 0.1507 0.1048 0.0337
λ 0.7595 0.3492 0.2595 0.1893
α 0.6783 0.8762 0.1783 0.7995
θ 1.7260 0.5125 −0.2740 0.3377

200 η 1.3868 1.4812 0.3868 2.3435
ϕ 0.4933 0.0795 −0.0067 0.0064
λ 0.0113 0.7808 −0.4887 0.8485
α 0.4748 0.2600 −0.0252 0.0682
θ 2.1514 0.2564 0.1514 0.0886

400 η 0.9169 0.2982 −0.0831 0.0958
ϕ 0.5194 0.0552 0.0194 0.0034
λ 0.6142 0.2851 0.1142 0.0943
α 0.5961 0.2093 0.0961 0.0530
θ 2.3019 0.2544 0.3019 0.1558

800 η 0.8400 0.2618 −0.1600 0.0941
ϕ 0.5490 0.0383 0.0490 0.0038
λ 0.6526 0.2559 0.1526 0.0887

MLE = maximum likelihood estimate; MSE = mean square error.

density functions are given by

1. Kumaraswamy Weibull Poisson (KwWP) distribution with pdf

f (x) = abcλβcxc−1 [
1 − exp (−(xβ)c)

]a−1 [
1 − (

1 − exp (−(βx)c)
)a]b−1

×
exp

[
−λ

{
1 − (

1 − (
1 − exp (−(βx)c)

)a)b} − (βx)c
]

(1 − exp(−λ))
,

where a, b, c > 0 are the shape parameters and β, λ > 0 are the scale parameters of the KwWP
distribution proposed by Ramos et al. (2015).

2. Transmuted additive Weibull (TAW) distribution with pdf

f (x) =
(
αθxθ−1 + ηβxβ−1

)
exp

(
−αxθ − ηxβ

) {
1 − λ + 2λ exp

(
−αxθ − ηxβ

)}
,

where α, η > 0 are the scale parameters, β, θ > 0 are the shape parameters and λ is the transmuted
parameter of the TAW distribution proposed by Elbatal and Aryal (2013).

3. New generalized Weibull (NGW) distribution with pdf

f (x) = ϕ
(
α + ηθxθ−1

)
exp

{
−αx − ηxθ

} [
1 − exp

{
−αx − ηxθ

}]ϕ−1
,

where α, η > 0 are the scale parameters and θ, ϕ > 0 are the shape parameter of the NGW distribu-
tion proposed by Zaindin and Sarhan (2011).
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Table 7: Estimates of the model parameters for the nicotine in cigarettes data

Distribution Estimates

GPW(α, β) 2.6135 1.3514
(0.1054) (0.0422)

EW(ϕ, η, θ) 0.8851 1.4647 3.0386
(0.1742) (0.2082) (0.3637)

NGW(ϕ, α, η, θ) 1.6403 0.4030 1.6472 2.7252
(0.5489) (0.4101) (0.1628) (0.2035)

TAW(α, β, η, θ, λ) 1.4979 1.1698 0.0762 3.0361 0.0113
(0.1349) (0.6121) (0.1016) (0.1868) (0.0252)

KwWP(a, b, c, λ, β) 0.7905 0.2064 3.0436 0.0215 1.9227
(0.1439) (0.0283) (0.0228) (0.4799) (0.0396)

TNGW(ϕ, α, η, θ, λ) 1.5793 0.3098 1.2887 2.9588 0.4920
(0.5532) (0.3432) (0.2270) (0.2259) (0.2617)

Table 8: Goodness-of-fit statistics for the nicotine in cigarettes data

Distribution AIC CAIC A∗ W∗ K-S test [p-value]
GPW(α, β) 142.48 142.51 4.0559 0.7726 0.1243 [9.54E−6]
EW(ϕ, η, θ) 143.70 143.76 3.9705 0.7510 0.1194 [2.47E−5]
NGW(ϕ, α, η, θ) 140.39 140.49 3.6479 0.6904 0.1213 [1.71E−5]
TAW(α, β, η, θ, λ) 144.38 144.53 3.8011 0.7244 0.1249 [8.50E−6]
KwWP(a, b, c, λ, β) 146.56 146.71 3.9465 0.7538 0.1250 [8.43E−6]
TNGW(ϕ, α, η, θ, λ) 140.36 140.47 3.4984 0.6577 0.1176 [3.45E−5]

AIC = Akaike information criterion, CAIC = consistent Akaike information criterion, A∗ = Anderson-Darling,
W∗ = Cramér-von Mises.

4. Exponentiated Weibull (EW) distribution with pdf

f (x) = ϕηθxθ−1 exp
(
−ηxθ

) {
1 − exp

(
−ηxθ

)}ϕ−1
,

where η > 0 is the scale parameter and ϕ, θ > 0 are the shape parameters of the EW distribution
introduced by Mudholkar and Srivastava (1993).

5. Generalized power Weibull (GPW) distribution with pdf

f (x) = αβxα−1 (1 + xα)β−1 exp
(
1 − (1 + xα)β

)
,

where α, β > 0 are the shape parameters of the GPW distribution proposed by Nikulin and
Haghighi (2006).

The required numerical evaluations are implemented using R language. The MLEs of the param-
eters (with their standard errors) for the nicotine in cigarettes data are displayed in Table 7. Table 8
illustrates their corresponding values of the Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (CAIC), Anderson-Darling (A∗), the Cramér-von Mises (W∗) and the K-S test
goodness-of-fit statistics to verify which model fits better. The results suggest that the TNGW distri-
bution has the smallest values of these statistics; therefore, the TNGW model can be chosen as the
best model among the six fitted models. Figure 6 shows the density functions with histogram and
empirical fitted plots of the six distributions. From the visualization of density functions and Table 8
indicate that the TNGW distribution provides a better fit than the other five distributions. Therefore,
the TNGW distribution can be chosen as the best model for nicotine in cigarettes data in terms of
model fitting. The estimated fitted survival function and P-P plot of the TNGW model for the nicotine
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Figure 6: Estimated densities of the TNGW, KWWP, TAW, NGW, GPW and EW models for the nicotine in
cigarettes data.
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Figure 7: Estimated fitted survival function and P-P plot of the TNGW model for the nicotine in cigarettes data.

in cigarettes data are displayed in Figure 7. These plots suggest that the TNGW distribution could be
chosen as the best model because it does fit better to the P-P plot and survival curve for the nicotine in
cigarettes data; therefore, we conclude that the TNGW model has better relationship for the nicotine
in cigarettes data.

8. Conclusion

In this paper, we have constructed the five-parameter distribution (referred to as the TNGW distri-
bution), which includes twenty-three lifetime distributions as special cases, as well as study its theo-
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retical properties. The TNGW model is more flexible than the KwWP, TAW, NGW, EW, and GPW
distributions proposed recently in the literature. We obtained the analytical shapes of density and
hazard functions of the TNGW distribution. The TNGW distribution has increasing, decreasing and
constant failure rate patterns for lifetime data. The flexibility and usefulness of the TNGW model is
illustrated in an application to nicotine in cigarettes data using MLE.
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