• Title/Summary/Keyword: Facial color

Search Result 324, Processing Time 0.024 seconds

Formative Elements of the Facial Image of Korean Women and the Effects of Makeup Design (한국여성의 얼굴이미지 유형별 형성요소와 메이크업 디자인의 효과)

  • Baek, Kyoung-Jin;Kim, Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.64 no.4
    • /
    • pp.1-20
    • /
    • 2014
  • The purpose of this study is to suppose makeup design based on formative elements of facial image according to the facial image type of Korean women in their 20s. For this study, literature review were performed. Surveys were conducted twice for empirical research. The survey targeted 220 university students in their 20s. SPSS 12.0 statistics program was used to analyze the results, and T-test, ANOVA, Scheff$\acute{e}$ test. The results of the study are as follows. First, it was concluded that the effective structural formative elements are different according to the types of facial image. Second, by analyzing the differences in perceiving naked facial image and modified face shape image, modified skin color image, modified makeup color image of all types of facial image, it was found that the formative elements are different according to facial images, and that there are differences in the effectiveness of each factors.

Facial Region Tracking in YCbCr Color Coordinates (YCbCr 컬러 영상 변환을 통한 얼굴 영역 자동 검출)

  • Han, M.H.;Kim, K.S.;Yoon, T.H.;Shin, S.W.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.63-65
    • /
    • 2005
  • In this study, the automatic face tracking algorithm is proposed by using the color and edge information of a color image. To reduce the effects of variations in the illumination conditions, an acquired CCD color image is first transformed into YCbCr color coordinates, and subsequently the morphological image processing operations, and the elliptical geometric measures are applied to extract the refined facial area.

  • PDF

Studies on the Darkness of the Face Skin by the influence of External Environments

  • Namgung, Ju.;Lee, K.K;Shin, L.Y;Kim, J.H.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.76-88
    • /
    • 1996
  • The facial color is affected by age increase, health condition, internal and/or external environment factors and so on. Especially, the external environment factors in accordance with the influence of environment pollution that is air pollution, exert a bad influence of skin. The object of this study shall be quantified the facial color change in accordance with age increase, external environment factors. Therefore we have make the measurement about the facial color change of Korean women by regional groups. We've quantified through correlation equation, the rate of the many external environment factors which influence the facial color change (air pollution, climate condition, season etc.) As the result of the study, we have reach to know that CO, $O_3$, $NO_2$ has high relation with hue, value, chrome change. The facial color change is proved to be influenced atmospheric environment condition. Besides in hue and value in relation with meteorology demonstrates its link with the temperature, the evaporation quantity, the duration of sunshine of each region. Therefore we have instill cognition of the environmental pollution in accordance with external environment factor that was quantified. And we have reach to know this study affects cosmetics development of new concept.

  • PDF

Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction (인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정)

  • Park Sung-Kee;Park Mignon;Lee Taigun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.

Facial Regions Detection Using the Color and Shape Information in Color Still Images (컬러 정지 영상에서 색상과 모양 정보를 이용한 얼굴 영역 검출)

  • 김영길;한재혁;안재형
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.1
    • /
    • pp.67-74
    • /
    • 2001
  • In this paper, we propose a face detection algorithm using the color and shape information in color still images. The proposed algorithm is only applied to chrominance components(Cb and Cr) in order to reduce the variations of lighting condition in YCbCr color space. Input image is segmented by pixels with skin-tone color and then the segmented mage follows the morphological filtering an geometric correction to eliminate noise and simplify the segmented regions in facial candidate regions. Multiple facial regions in input images can be isolated by connected component labeling. Moreover tilting facial regions can be detected by extraction of second moment-based ellipse features.

  • PDF

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

DETECTION OF FACIAL FEATURES IN COLOR IMAGES WITH VARIOUS BACKGROUNDS AND FACE POSES

  • Park, Jae-Young;Kim, Nak-Bin
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.594-600
    • /
    • 2003
  • In this paper, we propose a detection method for facial features in color images with various backgrounds and face poses. To begin with, the proposed method extracts face candidacy region from images with various backgrounds, which have skin-tone color and complex objects, via the color and edge information of face. And then, by using the elliptical shape property of face, we correct a rotation, scale, and tilt of face region caused by various poses of head. Finally, we verify the face using features of face and detect facial features. In our experimental results, it is shown that accuracy of detection is high and the proposed method can be used in pose-invariant face recognition system effectively

  • PDF

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

The Extraction of Face Regions based on Optimal Facial Color and Motion Information in Image Sequences (동영상에서 최적의 얼굴색 정보와 움직임 정보에 기반한 얼굴 영역 추출)

  • Park, Hyung-Chul;Jun, Byung-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • The extraction of face regions is required for Head Gesture Interface which is a natural user interface. Recently, many researchers are interested in using color information to detect face regions in image sequences. Two most widely used color models, HSI color model and YIQ color model, were selected for this study. Actually H-component of HSI and I-component of YIQ are used in this research. Given the difference in the color component, this study was aimed to compare the performance of face region detection between the two models. First, we search the optimum range of facial color for each color component, examining the detection accuracy of facial color regions for variant threshold range about facial color. And then, we compare the accuracy of the face box for both color models by using optimal facial color and motion information. As a result, a range of $0^{\circ}{\sim}14^{\circ}$ in the H-component and a range of $-22^{\circ}{\sim}-2^{\circ}$ in the I-component appeared to be the most optimum range for extracting face regions. When the optimal facial color range is used, I-component is better than H-component by about 10% in accuracy to extract face regions. While optimal facial color and motion information are both used, I-component is also better by about 3% in accuracy to extract face regions.

  • PDF

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.