• 제목/요약/키워드: Face detection and tracking

검색결과 149건 처리시간 0.022초

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

A Fast and Accurate Face Tracking Scheme by using Depth Information in Addition to Texture Information

  • Kim, Dong-Wook;Kim, Woo-Youl;Yoo, Jisang;Seo, Young-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.707-720
    • /
    • 2014
  • This paper proposes a face tracking scheme that is a combination of a face detection algorithm and a face tracking algorithm. The proposed face detection algorithm basically uses the Adaboost algorithm, but the amount of search area is dramatically reduced, by using skin color and motion information in the depth map. Also, we propose a face tracking algorithm that uses a template matching method with depth information only. It also includes an early termination scheme, by a spiral search for template matching, which reduces the operation time with small loss in accuracy. It also incorporates an additional simple refinement process to make the loss in accuracy smaller. When the face tracking scheme fails to track the face, it automatically goes back to the face detection scheme, to find a new face to track. The two schemes are experimented with some home-made test sequences, and some in public. The experimental results are compared to show that they outperform the existing methods in accuracy and speed. Also we show some trade-offs between the tracking accuracy and the execution time for broader application.

얼굴을 관심 영역으로 사용하는 자동 초점을 위한 얼굴 영역 추적 향상 방법 및 하드웨어 구현 (Face Region Tracking Improvement and Hardware Implementation for AF(Auto Focusing) Using Face to ROI)

  • 정효원;하주영;한학용;양훈기;강봉순
    • 한국정보통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.89-96
    • /
    • 2010
  • 본 논문은 얼굴을 관심 영역(ROI)으로 사용하는 자동 초점(AF, Auto Focusing) 시스템을 위 한 얼굴 검출 기능(Face Detection)의 얼굴 추적 향상 방법에 관한 것이다. 피부색을 바탕으로 얼굴을 검출하는 기존의 얼굴 검출 기능에서는 얼굴을 추적하기 위하여 이전 프레임에 검출된 얼굴 영역에 대하여 현재 프레임의 스킨 픽셀 비율을 사용한다. 이 방법은 동영상에서 얼굴 영역의 안정성은 뛰어나지만, 얼굴 추적 성능은 다소 떨어진다. 따라서 얼굴 추적 성능을 향상 시키기 위하여, 이전 프레임에 검출된 얼굴 영역과 현재 프레임에 검출된 얼굴 영역의 겹침을 조사하여 겹치는 영역의 면적을 이용하여 얼굴을 추적하는 방법을 제안하였다. 검증을 위하여 FPGA 보드와 모바일 폰 카메라용 CIS를 이용하여 실시간으로 얼굴 검출을 촬영하였고, 검출된 얼굴의 이동 궤적을 이용하여 성능을 검증하였다.

깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법 (A Fast and Accurate Face Detection and Tracking Method by using Depth Information)

  • 배윤진;최현준;서영호;김동욱
    • 한국통신학회논문지
    • /
    • 제37권7A호
    • /
    • pp.586-599
    • /
    • 2012
  • 본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이영상을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 $640{\times}480$ 해상도의 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존의 방법에 비해 약간 낮은 검출률을 보였으나, 얼굴로 인식하였지만 실제로는 얼굴이 아닌 경우의 오검출률에 있어서는 기존방법의 약 38% 향상된 성능을 보였다. 또한 얼굴추적 방법은 추적시간과 추적 정확도에 있어서 상보적인 관계를 가지며, 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.

Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적 (Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker)

  • 김기상;김세훈;박진영;최형일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.835-838
    • /
    • 2008
  • 본 논문에서는 얼굴 영역을 자동으로 검출하여 실시간으로 얼굴의 특징 짐을 추적하는 방법을 제안한다. Haar-like feature를 이용하여 얼굴 영역을 자동으로 추출하였으며, 회전에 강건한 KLT 알고리즘을 적용하여 얼굴의 특징 점들을 추출하였다. 그리고 실시간으로 얼굴의 특징점을 추적하기 위해 Lucas-Kanade 특징 추적 알고리즘을 사용하였다. 실험결과를 통하여 회전과 움직임에 강건하게 얼굴 영역을 검출하고 추적되는 것을 확인하였다.

  • PDF

무안경식 3차원 모니터용 실시간 눈 추적 알고리즘 (A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor)

  • 임영신;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

깊이정보와 컬러정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법 (A Fast and Accurate Face Detection and Tracking Method by using Depth Information and color information)

  • 김우열;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제16권9호
    • /
    • pp.1825-1838
    • /
    • 2012
  • 본 논문에서는 RGB영상과 깊이영상을 사용하여 얼굴검출 및 추적을 고속으로 수행할 수 있는 방법을 제안한다. 이 방법은 얼굴검출 과정과 얼굴추적 과정으로 구성되며, 얼굴검출 과정은 기본적으로 기존의 Adaboost 방법을 사용하나, 깊이정보와 피부색을 사용하여 탐색영역을 축소한다. 얼굴추적은 템플릿 매칭방법을 사용하며, 조기종료 기법을 사용하여 수행시간을 줄였다. 이 방법들을 구현하여 실험한 결과, 얼굴검출 방법은 기존의 방법에 비해 약 39%의 수행시간을 보였으며, 얼굴추적 방법은 프레임 당 2.48ms의 추적시간을 보였다. 또한 검출율에 있어서도 제안한 얼굴검출 방법은 기존방법과 비슷한 검출률을 보였지만, 오검출률에 있어서는 0.66%로 기존방법보다 상당히 향상된 성능을 보였다. 또한 얼굴추적 방법은 특별한 경우를 제외한 모든 경우에서 약 1%의 낮은 추적오차율을 보였다. 따라서 제안한 얼굴검출 및 추적방법은 각각 또는 결합하여 고속 동작과 높은 정확도를 필요로 하는 응용분야에 사용될 수 있을 것으로 기대된다.

AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적 (Real-Time Face Detection and Tracking Using the AdaBoost Algorithm)

  • 이우주;김진철;이배호
    • 한국멀티미디어학회논문지
    • /
    • 제9권10호
    • /
    • pp.1266-1275
    • /
    • 2006
  • 본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.

  • PDF

얼굴검출에 기반한 강인한 객체 추적 시스템 (Robust Object Tracking System Based on Face Detection)

  • 곽민석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권1호
    • /
    • pp.9-14
    • /
    • 2017
  • 최근 컴퓨터 기술의 발전과 함께 임베디드 기기 또한 다양한 기능을 갖추기 시작했다. 본 연구에서는 최근 활발하게 진행되고 있는 영상센서를 사용한 임베디드 기기 등 자원이 적은 기기에서 효율적인 얼굴 추적 방식을 제안한다. 정확한 얼굴을 얻기 위하여 MB-LBP 특징을 사용한 얼굴 검출 방식을 사용했으며, 다음 영상에서 얼굴 객체 추적을 위하여 얼굴 검출시 얼굴 주변 영역(Region of Interest)을 지정하였다. 그리고 얼굴을 검출을 못하는 영상에서는 기존의 객체 추적 방식인 CAM-Shift를 사용해 객체를 추적해 객체 정보의 손실 없이 정보를 유지할 수 있도록 하였다. 본 연구는 기존 연구와의 비교를 통하여 객체 추적 시스템의 정확성과 빠른 성능을 확인하였다.