• Title/Summary/Keyword: Face detection and tracking

Search Result 149, Processing Time 0.021 seconds

Tracking by Detection of Multiple Faces using SSD and CNN Features

  • Tai, Do Nhu;Kim, Soo-Hyung;Lee, Guee-Sang;Yang, Hyung-Jeong;Na, In-Seop;Oh, A-Ran
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.61-69
    • /
    • 2018
  • Multi-tracking of general objects and specific faces is an important topic in the field of computer vision applicable to many branches of industry such as biometrics, security, etc. The rapid development of deep neural networks has resulted in a dramatic improvement in face recognition and object detection problems, which helps improve the multiple-face tracking techniques exploiting the tracking-by-detection method. Our proposed method uses face detection trained with a head dataset to resolve the face deformation problem in the tracking process. Further, we use robust face features extracted from the deep face recognition network to match the tracklets with tracking faces using Hungarian matching method. We achieved promising results regarding the usage of deep face features and head detection in a face tracking benchmark.

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

A Fast and Accurate Face Tracking Scheme by using Depth Information in Addition to Texture Information

  • Kim, Dong-Wook;Kim, Woo-Youl;Yoo, Jisang;Seo, Young-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.707-720
    • /
    • 2014
  • This paper proposes a face tracking scheme that is a combination of a face detection algorithm and a face tracking algorithm. The proposed face detection algorithm basically uses the Adaboost algorithm, but the amount of search area is dramatically reduced, by using skin color and motion information in the depth map. Also, we propose a face tracking algorithm that uses a template matching method with depth information only. It also includes an early termination scheme, by a spiral search for template matching, which reduces the operation time with small loss in accuracy. It also incorporates an additional simple refinement process to make the loss in accuracy smaller. When the face tracking scheme fails to track the face, it automatically goes back to the face detection scheme, to find a new face to track. The two schemes are experimented with some home-made test sequences, and some in public. The experimental results are compared to show that they outperform the existing methods in accuracy and speed. Also we show some trade-offs between the tracking accuracy and the execution time for broader application.

Face Region Tracking Improvement and Hardware Implementation for AF(Auto Focusing) Using Face to ROI (얼굴을 관심 영역으로 사용하는 자동 초점을 위한 얼굴 영역 추적 향상 방법 및 하드웨어 구현)

  • Jeong, Hyo-Won;Ha, Joo-Young;Han, Hag-Yong;Yang, Hoon-Gee;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.89-96
    • /
    • 2010
  • In this paper, we proposed a method about improving face tracking efficiency of face detection for AF system using the faces to the ROI. The conventional face detection system detecting faces based skin color uses the ratio of skin pixels of the present frame to detected face regions of the past frame to track the faces. The tracking method is superior in the stability of the regions but it is inferior in the face tracking efficiency. We proposed a face tracking method using the area of the overlapping region in the detected face regions of the past frame and the present frame to improve the tracking efficiency. The proposed face tracking efficiency demonstration was performed by making a film of face detection with face tracking in real-time and using the moving traces of the detected faces.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information (깊이정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Bae, Yun-Jin;Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.586-599
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth image. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame with $640{\times}480$ resolution. For the exactness, the proposed detection method showed a little lower in detection ratio but in the error ratio, which is for the cases when a detected one as a face is not really a face, the proposed method showed only about 38% of that of the previous method. The proposed face tracking method turned out to have a trade-off relationship between the execution time and the exactness. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

A Real-time Eye Tracking Algorithm for Autostereoscopic 3-Dimensional Monitor (무안경식 3차원 모니터용 실시간 눈 추적 알고리즘)

  • Lim, Young-Shin;Kim, Joon-Seek;Joo, Hyo-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.839-844
    • /
    • 2009
  • In this paper, a real-time eye tracking method using fast face detection is proposed. Most of the current eye tracking systems have operational limitations due to sensors, complicated backgrounds, and uneven lighting condition. It also suffers from slow response time which is not proper for a real-time application. The tracking performance is low under complicated background and uneven lighting condition. The proposed algorithm detects face region from acquired image using elliptic Hough transform followed by eye detection within the detected face region using Haar-like features. In order to reduce the computation time in tracking eyes, the algorithm predicts next frame search region from the information obtained in the current frame. Experiments through simulation show good performance of the proposed method under various environments.

A Fast and Accurate Face Detection and Tracking Method by using Depth Information and color information (깊이정보와 컬러정보를 이용한 고속 고정밀 얼굴검출 및 추적 방법)

  • Kim, Woo-Youl;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1825-1838
    • /
    • 2012
  • This paper proposes a fast face detection and tracking method which uses depth images as well as RGB images. It consists of the face detection procedure and the face tracking procedure. The face detection method basically uses an existing method, Adaboost, but it reduces the size of the search area by using the depth information and skin color. The proposed face tracking method uses a template matching technique and incorporates an early-termination scheme to reduce the execution time further. The results from implementing and experimenting the proposed methods showed that the proposed face detection method takes only about 39% of the execution time of the existing method. The proposed tracking method takes only 2.48ms per frame. For the exactness, the proposed detection method and previous method showed a same detection ratio but in the error ratio, which is about 0.66%, the proposed method showed considerably improved performance. In all the cases except a special one, the tracking error ratio is as low as about 1%. Therefore, we expect the proposed face detection and tracking methods can be used individually or in combined for many applications that need fast execution and exact detection or tracking.

Real-Time Face Detection and Tracking Using the AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적)

  • Lee, Wu-Ju;Kim, Jin-Chul;Lee, Bae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1266-1275
    • /
    • 2006
  • In this paper, we propose a real-lime face detection and tracking algorithm using AdaBoost(Adaptive Boosting) algorithm. The proposed algorithm consists of two levels such as the face detection and the face tracking. First, the face detection used the eight-wavelet feature models which ate very simple. Each feature model applied to variable size and position, and then create initial feature set. The intial feature set and the training images which were consisted of face images, non-face images used the AdaBoost algorithm. The basic principal of the AdaBoost algorithm is to create final strong classifier joining linearly weak classifiers. In the training of the AdaBoost algorithm, we propose SAT(Summed-Area Table) method. Face tracking becomes accomplished at real-time using the position information and the size information of detected face, and it is extended view region dynamically using the fan-Tilt camera. We are setting to move center of the detected face to center of the Image. The experiment results were amply satisfied with the computational efficiency and the detection rates. In real-time application using Pan-Tilt camera, the detecter runs at about 12 frames per second.

  • PDF

Robust Object Tracking System Based on Face Detection (얼굴검출에 기반한 강인한 객체 추적 시스템)

  • Kwak, Min Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • Embedded devices with the development of modern computer technology also began equipped with a variety of functions. In this study, to provide a method of tracking efficient face with a small instrument of resources, such as built-in equipment that uses an image sensor in recent years has been actively carried out. It uses a face detection method using the features of the MB-LBP in order to obtain an accurate face, specify the region (Region of Interest) around the face when the face detection for the face object tracking in the next video did. And in the video can not be detected faces, to track objects using the CAM-Shift key is a conventional object tracking method, which make it possible to retain the information without loss of object information. In this study, through the comparison with the previous studies, it was confirmed the precision and high-speed performance of the object tracking system.