• Title/Summary/Keyword: FRAM(Ferroelectric Random Access Memory)

Search Result 37, Processing Time 0.024 seconds

Device characterization and Fabrication Issues for Ferroelectric Gate Field Effect Transistor Device

  • Yu, Byoung-Gon;You, In-Kyu;Lee, Won-Jae;Ryu, Sang-Ouk;Kim, Kwi-Dong;Yoon, Sung-Min;Cho, Seong-Mok;Lee, Nam-Yeal;Shin, Woong-Chul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.213-225
    • /
    • 2002
  • Metal-Ferroelectric- Insulator- Silicon (MFIS) structured field effect transistor (FET) device was fabricated and characterized. Important issues to realize ferroelectric gate field effect transistor device were summarized in three sections. The choice of interlayer dielectric was made in the consideration of device functionality and chemical reaction between ferroelectric materials and silicon surface during fabrication process. Also, various ferroelectric thin film materials were taken into account to meet desired memory window and process compatibility. Finally, MFIS structured FET device was fabricated and important characteristics were discussed. For feasible integration of current device as random access memory array cell address schemes were also suggested.

Metal-Organic Chemical Vapor Deposition of $Pb(Zr_xTi_{1-x})O_3$ Thin Films for High-Density Ferroelectric Random Access Memory Application

  • Lee, June-Key;Ku, June-Mo;Cho, Chung-Rae;Lee, Yong-Kyun;Sangmin Shin;Park, Youngsoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.3
    • /
    • pp.205-212
    • /
    • 2002
  • The growth characteristics of metal-organic chemical vapor deposition (MOCVD) $Pb(Zr_xTi_{1-x})O_3 (PZT) thin films were investigated for the application of high-density ferroelectric random access memories (FRAM) devices beyond 64Mbit density. The supply control of Pb precursor plays the most critical role in order to achieve a reliable process for PZT thin film deposition. We have monitored the changes in the microstructure and electrical properties of films on increasing the Pb precursor supply into the reaction chamber. Under optimized conditions, $Ir/IrO_2/PZT(100nm)/Ir capacitor shows well-saturated hysteresis loops with a remanent polarization (Pr) of $~28{\mu}C/textrm{cm}^2$ and coercive voltage of 0.8V at 2.5V. Other issues such as step coverage, compositional uniformity and low temperature deposition was discussed in viewpoint of actual device application.

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coulped $Cl_2/Ar$ Plasma (유도 결합 플라즈마($Cl_2/Ar$)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$to YMnO$_3$was 1.83. As a XPS analysis, the surface of etched CeO$_2$thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

A Study on the Etching Characteristics of $YMnO_3$ Thin Films in High Density $Cl_2/Ar$ Plasma (고밀도 $Cl_2/Ar$ 플라즈마를 이용한 $YMnO_3$ 박막의 식각 특성에 관한 연구)

  • 민병준;김창일;장의구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.21-24
    • /
    • 2000
  • Ferroelectric YMnO$_3$thin films are excellent dielectric materials for high integrated ferroelectric random access memory (FRAM) with metal-ferroelectric-silicon field effect transistor (MFSFET) structure. In this study, YMnO$_3$thin films were etched with Cl$_2$/Ar gas chemistries in inductively coupled plasma (ICP). The maximum etch rate of YMnO$_3$thin films is 285 $\AA$/min under Cl$_2$/Ar of 10/0, 600 W/-200 V and 15 mTorr. The selectivities of YMnO$_3$over CeO$_2$and $Y_2$O$_3$are 2.85, 1.72, respectively. The results of x-ray photoelectron spectroscopy (XPS) reflect that Y is removed dominantly by chemical reaction between Y and Cl, while Mn is removed more effective by Ar ion bombardment than chemical reaction. The results of secondary ion mass spectrometer (SIMS) were equal to these of XPS. The etch profile of the etched YMnO$_3$film is approximately 65$^{\circ}$and free of residues at the sidewall.

  • PDF

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coupled $Cl_2$/Ar Plasma (유도 결합 플라즈마($Cl_2$/Ar)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$ thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$ film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$ thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$ to YMnO$_3$ was 1.83. As a XPS analysis, the surface of etched CeO$_2$ thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

Characteristics of Ferroelectric SrBi2Ta2O9 Thin Films deposited by Plasma-Enhanced Atomic Layer Deposition (플라즈마 원자층증착법에 의해 제조된 강유전체 SrBi2Ta2O9박막의 특성)

  • 신웅철;류상욱;유인규;윤성민;조성목;이남열;유병곤;이원재;최규정
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.35-35
    • /
    • 2003
  • Recent progress in the integration of the ferroelectric random access memories (FRAM) has attracted much interest. Strontium bismuth tantalate(SBT) is one of the most attractive materials for use in nonvolatile-memory applications due to low-voltage operations, low leakage current, and its excellent fatigue-free property. High-density FRAMs operated at a low voltage below 1.5V are applicable to mobile devices operated by battery. SBT films thinner than 0.1 #m can be operated at a low voltage, because the coercive voltage (Vc) decreases as the film thickness is reduced. In addition, the thickness of the SBT film will have to be reduced so it can fit between adjacent storage nodes in a pedestal type capacitor in future FRAMs.

  • PDF

Degradation from Polishing Damage in Ferroelectric Characteristics of BLT Capacitor Fabricated by Chemical Mechanical Polishing Process (화학적기계적연마 공정으로 제조한 BLT Capacitor의 Polishing Damage에 의한 강유전 특성 열화)

  • Na, Han-Yong;Park, Ju-Sun;Jung, Pan-Gum;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.236-236
    • /
    • 2008
  • (Bi,La)$Ti_3O_{12}$(BLT) thin film is one of the most attractive materials for ferroelectric random access memory (FRAM) applications due to its some excellent properties such as high fatigue endurance, low processing temperature, and large remanent polarization [1-2]. The authors firstly investigated and reported the damascene process of chemical mechanical polishing (CMP) for BLT thin film capacitor on behalf of plasma etching process for fabrication of FRAM [3]. CMP process could prepare the BLT capacitors with the superior process efficiency to the plasma etching process without the well-known problems such as plasma damages and sloped sidewall, which was enough to apply to the fabrication of FRAM [2]. BLT-CMP characteristics showed the typical oxide-CMP characteristics which were related in both pressure and velocity according to Preston's equation and Hernandez's power law [2-4]. Good surface roughness was also obtained for the densification of multilevel memory structure by CMP process [3]. The well prepared BLT capacitors fabricated by CMP process should have the sufficient ferroelectric properties for FRAM; therefore, in this study the electrical properties of the BLT capacitor fabricated by CMP process were analyzed with the process parameters. Especially, the effects of CMP pressure, which had mainly affected the removal rate of BLT thin films [2], on the electrical properties were investigated. In order to check the influences of the pressure in eMP process on the ferroelectric properties of BLT thin films, the electrical test of the BLT capacitors was performed. The polarization-voltage (P-V) characteristics show a decreased the remanent polarization (Pr) value when CMP process was performed with the high pressure. The shape of the hysteresis loop is close to typical loop of BLT thin films in case of the specimen after CMP process with the pressures of 4.9 kPa; however, the shape of the hysteresis loop is not saturated due to high leakage current caused by structural and/or chemical damages in case of the specimen after CMP process with the pressures of 29.4 kPa. The leakage current density obtained with positive bias is one order lower than that with negative bias in case of 29.4 kPa, which was one or two order higher than in case of 4.9 kPa. The high pressure condition was not suitable for the damascene process of BLT thin films due to the defects in electrical properties although the better efficiency of process. by higher removal rate of BLT thin films was obtained with the high pressure of 29.4 kPa in the previous study [2].

  • PDF

Dry etching properties of SBT thin films using $Cl_2/Ar$ inductively coupled plasma ($Cl_2/Ar$ 유도결합 플라즈마를 이용한 SBT 박막의 건식 식각 특성)

  • Yeo, Ji-Won;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.404-407
    • /
    • 2003
  • Among the ferroeletric thin films that have been widely investigated for ferroelectric random access memory (FRAM) applications, the $SrBi_2Ta_2O_9$ (SBT) thin film is appropriate as a memory capacitor material due to its excellent fatigue endurance. SBT thin films were etched in high-density $Cl_2/Ar$ in inductively coupled plasma. The maximum etch rate of SBT film is $1834\;{\AA}/min$ under $Cl_2/(Cl_2+Ar)$ of 30 %, rf power of 700 W, dc-bias voltage of -250 V, chamber pressure of 11 mTorr and gas flow rate of 20 sccm.

  • PDF

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices (메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성)

  • Gang, Dong-Hun;Choe, Hun-Sang;Lee, Jong-Han;Im, Geun-Sik;Jang, Yu-Min;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

Effect of RTA Treatment on $LiNbO_3$ MFS Memory Capacitors

  • Park, Seok-Won;Park, Yu-Shin;Lim, Dong-Gun;Moon, Sang-Il;Kim, Sung-Hoon;Jang, Bum-Sik;Junsin Yi
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.138-142
    • /
    • 2000
  • Thin film $LiNbO_3$MFS (metal-ferroelectric-semiconductor) capacitor showed improved characteristics such as low interface trap density, low interaction with Si substrate, and large remanent polarization. This paper reports ferroelectric $LiNbO_3$thin films grown directly on p-type Si (100) substrates by 13.56 MHz RF magnetron sputtering system for FRAM (ferroelectric random access memory) applications. RTA (rapid thermal anneal) treatment was performed for as-deposited films in an oxygen atmosphere at $600^{\circ}C$ for 60sec. We learned from X-ray diffraction that the RTA treated films were changed from amorphous to poly-crystalline $LiNbO_3$which exhibited (012), (015), (022), and (023) plane. Low temperature film growth and post RTA treatments improved the leakage current of $LiNbO_3$films while keeping other properties almost as same as high substrate temperature grown samples. The leakage current density of $LiNbO_3$films decreased from $10^{-5}$ to $10^{-7}$A/$\textrm{cm}^2$ after RTA treatment. Breakdown electric field of the films exhibited higher than 500 kV/cm. C-V curves showed the clockwise hysteresis which represents ferroelectric switching characteristics. Calculated dielectric constant of thin film $LiNbO_3$illustrated as high as 27.9. From ferroelectric measurement, the remanent polarization and coercive field were achieved as 1.37 $\muC/\textrm{cm}^2$ and 170 kV/cm, respectively.

  • PDF