• Title/Summary/Keyword: FET Switch

Search Result 33, Processing Time 0.022 seconds

Design of a Dual-Band Switch with 2.4[GHz]/5.8[GHz] (2.4[GHz]/5.8[GHz] 이중대역 SPDT 스위치 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.52-58
    • /
    • 2008
  • Ths paper describes the Dual-band switch which was proposed new structure that could improved the specification of broadband and designed by the optimized structure through simulation. The Dual-band switch with 2.4[GHz]/5.8[GHz] that can apply to 802.11a/b/g system that is commercialized present was studied to get a new structure with higher power, high isolation. The transmitter of switch was designed to operate a parallel switching element with stack structure of two FET. The receiver designed to have asymmetry structure that insert series FET in addition to basic serial/parallel FET. SPDT(Single Pole Double Throw) Tx/Rx FET switch is a device that can do switching from a port of input to two port of output. The fabricated SPDT switch has the characteristic of insertion loss of a below -3[dB] form DC to 6[GHz] and the isolation of a below -30D[dB](Rx mode).

A Study on Influence of Synchronous Rectification Switch on Efficiency in Totem Pole Bridgeless PFC (토템폴 브리지리스 PFC에서 동기정류 스위치의 효율 영향에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.108-113
    • /
    • 2021
  • In this paper, a totem pole PFC was structured in two methods with FET and diode for low-speed switch while GaN FET was used for high-speed switch. Internal power loss, power conversion efficiency and steady-state characteristics of the two methods were compared in the totem pole bridgeless PFC circuit which is widely applied in large-capacity and high-efficiency switching rectifier of 500W or more. In order to compare and confirm the steady-state characteristics under equal conditions, a 2kW class totem pole bridgeless PFC was constructed and the experimental results were analyzed. From the experimental results, it was confirmed that the low-speed switch operation has a large difference in efficiency due to the internal conduction loss of the low-speed switch at a low input voltage. Especially, input power factor and load characteristic showed no difference regardless of the low-speed switch operation.

Characteristics Analysis of Class E Frequency Multiplier using FET Switch Model (FET 스위치 모델을 이용한 E급 주파수 체배기 특성 해석)

  • Joo, Jae-Hyun;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.596-601
    • /
    • 2011
  • This paper has presented research results for the switching mode class E frequency multiplier that has simple circuit structure and high efficiency. Frequency multiplication is coming from the nonlinearity of the active component, and this paper models the FET active component as a simple switch and some parasitics to analyze the characteristics. The matching component parameters for the class E frequency doubler have been derived with modeling the FET as a input controlled switch and some parasitics. A circuit simulator, ADS, is used to simulate the output voltage and current waveform and efficiency with the variation of the parasitic values. With 2.9GHz input and 2V bias, the drain efficiency has been decreased from 98% to 28% with changing the parasitic capacitance from 0pF to 1pF at 5.8GHz output, which shows that the parasitic capacitance CP has the most significant effect on the efficiency among the parasitics of FET.

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

A Study on the Efficiency Characteristics of the Interleaved CRM PFC using GaN FET (GaN FET를 적용한 인터리브 CRM PFC의 효율특성에 관한 연구)

  • Ahn, Tae-Young;Jang, Jin-Haeng;Gil, Yong-Man
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • This paper presents the efficiency analysis of a critical current mode interleaved PFC rectifier, in which each of three different semiconductor switches is employed as the active switch. The Si FET, SiC FET, and GaN FET are consecutively used with the prototype PFC rectifier, and the efficiency of the PFC rectifier with each different semiconductor switch is analyzed. An equivalent circuit model of the PFC rectifier, which incorporates all the internal losses of the PFC rectifier, is developed. The rms values of the current waveforms main circuit components are calculated. By adapting the rms current waveforms to the equivalent model, all the losses are broken down and individually analyzed to assess the conduction loss, switching loss, and magnetic loss in the PFC rectifier. This study revealed that the GaN FET offers the highest overall efficiency with the least loss among the three switching devices. The GaN FET yields 96% efficiency at 90 V input and 97.6% efficiency at 240 V, under full load condition. This paper also confirmed that the efficiency of the three switching devices largely depends on the turn-on resistance and parasitic capacitance of the respective switching devices.

Design of Broadband FET Switch Using Drain Impedance Transformation Network (드레인 임피던스 변환회로를 이용한 광대역 FET 스위치 설계)

  • Choi, Won;No, Hee-Jung;Oh, Chung-Kyun;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.60-63
    • /
    • 2003
  • This paper describes the design and the simulation of a V-band single pole double throw (SPDT) FET switch fur millimeter-wave applications using drain impedance transformation network with CPW transmission line. The designed switch has about 10% bandwidth at 60GHz. Insertion loss is better than 3dB fur the ON state and Isolation is larger than 30dB fer the OFF state. The maximum isolation is 43.4dB at 60GHz with input power of 10dBm. The yield analysis is done considering the effects of pHEMT variations.

  • PDF

SPST Switch MMIC for Microwave Switch Matrix (마이크로웨이브 스위치 메트릭스 용 SPST 스위치 MMIC)

  • Chang Dong-Pil;Yom In-Bok;Oh Seung-Hyueb
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.201-206
    • /
    • 2006
  • A SPST Switch MMIC which used for Microwave Switch Matrix(MSM) of communications satellite payload with multi-beam function has been designed and fabricated. New RE FET switch configuration has been devised to improve power characteristics and isolation. Input and output return losses are better than another switches reported previously for both On and Off states. The MMIC chips were fabricated in 0.15um GaAs pHEMT process and measured insertion loss less than 2.0dB and isolation more than 63dB in the frequency range of 3GHz$\∼$4GHz. Output 3rd order interceptpoint above 32dBm has been recorded and the value is very high even though the unit pHEMT has gate width of 0.2mm and only four pHEMT are used in the MMTC.

Design of SPA Antenna Using FET Switch for 2.6 GHz (FET 스위치를 이용한 2.6 GHz 용 SPA 안테나 설계)

  • Kang, Hyun-Sang;Park, Young-Il;Yong, Hwan-Gu;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1137-1144
    • /
    • 2012
  • In this paper, a 2.6 GHz switched parasitic array(SPA) antenna is designed to resolve the device interference in the femtocell. The designed SPA antenna structure consists of a central ${\lambda}/4$ monopole antenna as a radiator and surrounding four parasitic elements operating as a reflector or a director depending on the switching state. In addition, open state monopoles around the parasitic elements are placed to improve the directivity. The designed antenna utilizes RF FETs as switching elements instead of conventional PIN diodes, which enables beam steering with a simple structure consuming low power. To select the proper FET switch, the performance of the SPA antenna depending on the switch characteristics is analyzed. The fabricated antenna has 65 mm radius and 35 mm height, which shows about 15 dB front-back-ratio(FBR) at 2.6 GHz and enables eight-directional beam steering.

Broadband Microwave SPDT Switch Using CPW Impedance Transform Network (CPW 임피던스 변환회로를 이용한 광대역 마이크로파 SPDT 스위치)

  • Lee Kang Ho;Park Hyung Moo;Rhee Jin Koo;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.57-62
    • /
    • 2005
  • This paper describes the design of a high performance microwave single pole double throw (SPDT) monolithic microwave integrated circuit switch using GaAs pHEMT process. The switch design proposes a novel coplanar waveguide (CPW) impedance transform network which results in the low insertion loss and high isolation by compensating for the FET parasitics to get the low on-resistance and low off-capacitance. The proposed switch has the measured isolation of better than 24 dB and insertion loss of less than 2.6 dB from 53 to 61 GHz. The chip is fabricated with the size of 2.2mm $\times$ 1.6 mm.