이 글에서는 19세기 후반부터 수학교육개혁 운동에서 지도적인 역할을 하였던 F. Klein의 수학교육에 대해 재음미하고 시사점을 논의한다. Klein의 초기 수학교육에 대한 관점을 보여주는 1872년 'Erlanger Antrittsrede'와 현대 수학교육과정의 기초이며 널리 알려진 1905년 'Meraner Lehrplan f$\"{u}$r Mathematik'를 중심으로 고찰한다. 이를 바탕으로 수학교육의 목적과 방법, 교사교육의 중요성 등의 교육적 시사점을 논의한다.
Let f : M ${\rightarrow}$ M be a self-map on the Klein bottle M. We compute the Lefschetz number and the Nielsen number of f by using the infra-nilmanifold structure of the Klein bottle and the averaging formulas for the Lefschetz numbers and the Nielsen numbers of maps on infra-nilmanifolds. For each positive integer n, we provide an explicit algorithm for a complete computation of the Nielsen type numbers $NP_n(f)$ and $N{\Phi}_{n}(f)\;of\;f^{n}$.
오늘날 수학교육에 있어서 가장 중요한 문제 중 하나는 학교수학의 인간교육적 기반을 회복하는 것이며, 이를 위해서는 '수학을 가르치는 이유는 무엇인가'라는 보다 근원적인 문제에 대한 논의가 새롭게 요구된다. 본 논문은 생활의 문제 해결이나 과학 기술을 위한 유용한 도구적 지식교육을 지향하는 오늘날 수학교육에 대한 문제 의식에서 출발한다. 먼저 '마음의 중층구조 이론에 비추어 이론적 지식 중심의 수학교육의 의미를 분석적으로 논의하고, 과거 교육사상사에서 수학교육이 어떤 인간교육적 이념을 추구해 왔는지를 Platen과 Froebel의 교육론을 통해서 살펴보았다. 그리고 20세기 초수학교육 개혁운동을 선도하여 현대의 수학교육 천학 및 수학 교육과정의 기본바탕을 제시한 F. Klein의 수학교육론을 고찰하였다. 특히 Klein의 수학교육 사상의 이면을 보다 명확히 드러내기 위하여, '마음의 중층구조'에 비추어 그의 수학교육론을 심성함양이라는 측면에서 재음미하였다. 또한 Klein의 수학교육 이념에 대한 보다 발전적인 논의를 위하여 Klein 이후 수학교육 발전과정에서 드러난 몇 가지 연구결과를 종합하여 심성함양으로서 '함수적 사고' 교육에 대한 발전적 고찰을 시도하였다. 이상과 같은 고찰을 통해 실용적 가치 추구로만 여겨졌던 오늘날의 수학 교육과정의 이면에 심성함양으로서의 인간교육적 가치가 핵심을 이루고 있으며, 수학교육은 그러한 가치 추구를 중시함으로써 심성함양에 기여해야 함을 논하였다.
In this paper, the relativistic Vlasov-Klein-Gordon system in one dimension is investigated. This non-linear dynamics system consists of a transport equation for the distribution function combined with Klein-Gordon equation. Without any assumption of continuity or compact support of any initial particle density $f_0$, we prove the existence and uniqueness of the mild solution via the iteration method.
The nonlinear Klein Gordon equation $$ (1) \frac{\partial t^2}{\partial^2 u} - \Delta u + V_u(u) = f $$ where $\Delta$ is the Laplacian operator in $R^d (d = 1, 2, 3), V_u(u)$ is the derivative of the "potential function" V, and f is a source term independent of the solution u, in various areas of mathematical physics.l physics.
This paper is concerned with the following Klein-Gordon-Maxwell system: $$\{-{\Delta}u+{\lambda}V(x)u-(2{\omega}+{\phi}){\phi}u=f(x,u),\;x{\in}\mathbb{R}^3,\\{\Delta}{\phi}=({\omega}+{\phi})u^2,\;x{\in}\mathbb{R}^3$$ where ${\omega}$ > 0 is a constant and ${\lambda}$ is the parameter. Under some suitable assumptions on V (x) and f(x, u), we establish the existence and multiplicity of nontrivial solutions of the above system via variational methods. Our conditions weaken the Ambrosetti Rabinowitz type condition.
미국 버지니아대학 수학과 교수, 보험회사 계리인, 변호사를 거쳐, 영국 육군사관학교 교관으로 55세에 정년을 한 유태계 영국 수학자 J. J. 실베스터는 61세의 나이로 1876년 미국 최초의 연구중심대학인 존스홉킨스대학에 초대 수학과장으로 초빙되어 연구 인력을 배출하고 미국 최초의 수학연구저널을 발간하며 미국에 현대수학의 연구 여건을 마련 해 준다. 본 논문은 그와 그가 후임으로 추천한 F. 클라인이 19세기 후반 미국수학계에 끼친 역할을 분석한다. 우리는 실베스터와 클라인과 미국인 수학자 E. H. 무어가 100여년 전 낙후된 미국 수학을 당시 유럽 중심의 수학계 주류에 진입시키는 과정에서의 역할과 이 과정이 한국에서 갖는 의미를 생각한다.
비선형 클라인 고든 방정식의 수치해를 구하기 위해 라그란제 보간을 사용하는데 비선형 항을 계산하기위해 보간식의 차이가 거의 없는 변형된 식을 사용하여 해의 .안정성과 해의 수렴성을 밝히고 오차를 분석하였다. 즉 $I(x)^{3}$ 대신에 $f(x_i)^{3}I_i(x)$을 사용하였으며 오차는 $C(\frac{1}{N})^{N-1} hN(N-1)(\frac{N}{2})^{N-1} /(\frac{N}{2})!$ 이하임을 보였고 석기서 N은 다항식의 차수이다.
This paper provides some functional equations and parametric expressions of f-essential maps on the projective plane, on the torus and on the Klein bottle with the size as a parameter and gives their explicit formulae for exact enumeration further.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.