라그란제 보간을 사용한 비선형 클라인 고든 미분방정식의 수치해

01 인 젓'

8 약

비선형 클라인 고든 방정식의 수치해를 구하기 위해 라그란제 보간을 사용하는데 비선형 항을 계산하기위해 보간식의 차이가 거의 없는 변 형된 식을 사용하여 해의 ι 안정성과 해의 수렴성을 밝히고 오차를 분석하였다. 즉 $I(x)^3$ 대신에 $f(x_i)^3 I_i(x)$ 을 사용하였으며 오차는 $C\left(\frac{1}{N}\right)^{N-1}hN(N-1)\left(\frac{N}{2}\right)^{N-1}/\left(\frac{N}{2}\right)!$ 이하임을 보였고 여기서 N은 다항식의 차수이다.

Numerical Solution for Nonlinear Klein-Gordon Equation by Using Lagrange Polynomial Interpolation with a Trick

In-Jung Lee

ABSTRACT

In this paper, by using Lagrange polynomial interpolation with a trick such that for $f(x)^3$ we shall use $f(x_i)^3I_i(x)$ instead of $I(x)^3$ where $I(x) = \sum_{i} f(x_i) I_i(x)$. We show the convergence and stability and calculate errors. These errors are approximately less than $C\Big(\frac{1}{N}\Big)^{N-1}hN(N-1)\Big(\frac{N}{2}\Big)^{N-1}/\Big(\frac{N}{2}\Big)! \text{ where N is a polynomial degree.}$

키워드: 비선형 클라인고든 미분방정식(Non-linear Klein-Gordon Equation), 라그란제 보간(Lagrange Interpolation)

1. Introduction

The nonlinear Klein Gordon equation

$$\frac{\partial^2 u}{\partial t^2} - \Delta u + V_u(u) = f \tag{1}$$

where Δ is the Laplacian operator in \mathbb{R}^d (d=1,2,3), $V_u(u)$ is the derivative of the "Newtonian potential function" V, and f is a source term independent of the solution u, in various areas of mathematical physics. Among the particular cases which are the practical relevance, we take $V_{u}(u) = |u|^{\alpha} u$ with $\alpha > 0$ (quantum mechanics), refer to[5].

The convergence of the Galerkin finite element method for second order hyperbolic equations has been studied by

many authors: cf. among others Dupont[3], who obtained error estimates for time-discrete and time continuous approximations of linear problems, and Dendy[2], who examined nonlinear problems as well as various modified Galerkin methods. To compute the nonlinear term, the product approximation is used by Yves Tourigny[6]. This approximation is a technique which consists of replacing the nonlinear term by its interpolant in the finite-dimensional subspaces. This provides an interesting alternative to numerical quadrature and greatly eases the implementation of the Galerkin method.

In this paper, by using Lagrange polynomial interpolation with a trick such that let I(x) be an interpolation function with n-node x_i of an arbitrary function f(x), if we need an interpolation for $f(x)^3$, then we shall use $f(x_i)^3 I_i(x)$ instead of $I(x)^3$ where $I(x) = \sum_i f(x_i) I_i(x)$

we get the numerical solutions of (1) when $\Delta u = \frac{\partial^2 u}{\partial x^2}$.

 [※] 이 논문은 2004년도 호서대학교 학술연구조성비에 의하여 연구되었음.
 † 정 회 원: 호서대학교 컴퓨터공학부 교수
 논문접수: 2004년 6월 2일, 심사완료: 2004년 11월 9일

We show an example about $f(x)^3$, $f(x_i)^3 I_i(x)$, $I(x)^3$, where $f(x) = \sin x$ has 15 nodes in (Figure 1).

(Figure 1) $f(x)^3$ and $I(x)^3$ are same for every point but $f(x)^3$ $I_i(x)$ has some difference at near the boundary

To show the stability and convergence, we set as many distinct points

$$x_k \ k \in J$$
 (a set of indices)

in the domain Ω or in its boundary $\partial \Omega$, as the dimension of the space $Pol_N(\Omega)$. At the number of these points, located on $\partial \Omega$, the boundary conditions are imposed. The remaining points are used to enforce the differential equation.

We assume that for any $k \in J$, there exists a polynomial $\phi_k \in Pol_N(\Omega)$, necessarily unique, such that

$$\phi_k(x_m) = \begin{cases} 1 & \text{if } k = m, \\ 0 & \text{if } k \neq m. \end{cases}$$

The ϕ_k 's form a basis for the polynomials of degree N, since $v(x) = \sum_{k \in J} v(x_k) \phi_k(x)$ for all $v \in Pol_N(\Omega)$. Let J be divided into two disjoint subsets J_e and J_b , such that if $k \in J_b$, the x_k 's are on the part $\partial \Omega$ of the boundary. Moreover, let L_N be an approximation to the operator L in which derivatives are taken at the points x_k 's. The polynomial $u^N \in Pol_N(\Omega)$ is a solution that satisfies the equations

$$\begin{cases} L_N u^N(x_k) = f(x_k) & \text{for all } k \in J_e, \\ B u^N(x_k) = 0 & \text{for all } k \in J_b. \end{cases}$$

The unknowns in this method are the values of u^N at the points x_k 's, i.e., the coefficients of u^N with respect to the Lagrange polynomial. We consider a bilinear form $(u,v)_N$ on the space $C^0(\Omega)$ of the functions continuous up to the boundary of Ω by fixing a family of weights w_k and setting

$$(u,v) = \sum_{k \in I} u(x_k) \overline{v(x_k)} w_k.$$

The existence of the basis ensures that $(u, v)_N$ is an inner product on $Pol_N(\Omega)$. Consequently, we define a discrete norm on $Pol_N(\Omega)$ as

$$\| u \|_{N} = \{(u, u)_{N}\}^{\frac{1}{2}} \text{ for } u \in Pol_{N}(\Omega)$$

The basis of ϕ_k 's is orthogonal under the discrete inner product. We make the assumption that the nodes $\{x_k\}$ and the weights $\{w_k\}$ are such that

$$(u, v)_N = (u, v)$$
 for all u, v such that $uv \in Pol_{2N-1}(\Omega)$.

In all the applications, this assumption is fulfilled since the x_k 's are the knots of quadrature formulas of Gaussian type.

Let X_N be the space of the polynomials of degree less than or equal to which satisfy the boundary conditions, i.e.,

$$X_N = \{ v \in Pol_N(\Omega) \mid Bv(x_k) = 0 \text{ for all } k \in J_k \}$$

Then this method is equivalently written as

$$\begin{cases} u^N \in X_N \\ (L_N u^N, \phi_k) = (f, \phi_k)_N \text{ for all } k \in J_e. \end{cases}$$

If Y_N is the space spanned by the ϕ_k 's with $k \in J_e$, i.e.,

$$Y_N = \{ v \in Pol_N(\Omega) \mid v(x_k) = 0 \text{ for all } k \in J_k \}$$

then can be written as

$$\left\{ \begin{array}{l} u^N \in X_N \\ (L_N u^N, v) = (f, v)_N \text{ for all } v \in Y_N. \end{array} \right.$$

2. Stability

Let Q be an interval [-1, 1]. We would like to approximate the solution of the following problem

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + |u|^{\alpha} u = f \text{ in } Q = \Omega \times [0, T]$$

$$u(.,0) = u_0 \text{ and } \left(\frac{\partial u}{\partial t}\right)(.,0) = u_1 \text{ in } \Omega$$

$$u(-1,t) = u(1,t) = 0 \text{ for } t \in [0,T]$$

where $u_0 \in H_0(Q)$, $u_1 \in L(Q)$ and $f \in L(Q)$ are given functions, a small T > 0.

The solution $u^{N}(x, t)$ of the Legendre Tau approx-

imation of this problem is for all t > 0 a polynomial of degree N in x, which is zero at $x = \pm 1$ and satisfies the equations,

$$\int_{-1}^{1} [u_{tt}^{N}(x,t) - u_{xx}^{N}(x,t) + |u^{N}(x,t)|^{a} u^{N}(x,t)] v(x) dx$$

$$= \int_{-1}^{1} f(x,t) v(x) dx \quad t > 0, \text{ for all } t \in P_{N-2}$$

$$\int_{-1}^{1} [u^{N}(x,0) - u_{0}(x)] v(x) dx = 0$$

$$\int_{-1}^{1} [u_{t}^{N}(x,0) - u_{1}(x)] v(x) dx = 0$$
(3)

Let we set
$$X_N = \{u \in P_N \mid u(-1) = u(1) = 0\}$$
, $Y_N = P_{N-2}$, and $(u, v) = \int_{-1}^{1} u(x) v(x) dx$. For all $u \in X_N$ we have
$$\int_{-1}^{1} u_{xx} P_{N-2} u dx = -\int_{-1}^{1} u_{xx}^N u dx = \int_{-1}^{1} (u_x)^2 dx$$

But, we know that the degree of $|u^N|^a u^N$ is greater than 2N-1. Here, we shall use the approximation of $|u^N|^a u^N$ in (3). We substitute $I_N|u^N|^a u^N$ instead of $|u^N|^a u^N$ where $I_N: C(\Omega) \to X_N$ is the interpolation operator.

We shall find the approximate solution $u_N \in X_N$ such that

$$\int_{-1}^{1} [u_{tt}^{N}(x,t) - u_{xx}^{N}(x,t) + I_{N}|u^{N}(x,t)|^{\alpha}u^{N}(x,t)]v(x)dx$$

$$= \int_{-1}^{1} f(x,t)v(x)dx \qquad t > 0, \text{ for all } t \in P_{N-2},$$

$$\int_{-1}^{1} [u^{N}(x,0) - u_{0}(x)]v(x)dx = 0$$

$$\int_{-1}^{1} [u_{t}^{N}(x,0) - u_{1}(x)]v(x)dx = 0.$$
(4)

Theorem 1. For some T > 0,

$$\begin{split} &\|P_{N-2}u_t^N(t)\|_{L_w(-1,1)}^2 + \|u_x^N(t)\|^2 + (2\beta/P)\|u^N(t)\|_{L^p_{(-1,1)}}^b \\ &\leq &\{P_{N-2}u_t^N(0)\|_{L_w(-1,1)}^2 + \|u_x^N(0)\|^2 + (2\beta/P)\|u^N(0)\|_{L^p_{(-1,1)}}^b \\ &+ \int_0^T &\|f(s)\|_{L_w(-1,1)}^2 ds\}e^T \end{split}$$

proof. Take $v \in Pol_{N-2}u_t^N$, from the left hand side first term in (4)

$$\int_{-1}^{1} u_{t}(x,t) P_{N-2} u_{t}^{N}(x,t) dx$$

$$= \int_{-1}^{1} P_{N-2} u_{t}(x,t) P_{N-2} u_{t}^{N}(x,t) (1-x^{2}) dx$$

$$= (1/2) \frac{d}{dt} \|P_{N-2} u_{t}^{N}(t)\|_{L_{w}(-1,1)}^{2},$$

and the second term,

$$-\int_{-1}^{1} u_{xx}^{N}(x,t) P_{N-2} u_{t}^{N}(x,t) dx$$

$$= \int_{-1}^{1} u_{xx}^{N}(x,t) P_{N-2} \frac{d}{dt} u^{N}(x,t) dx$$

$$= \int_{-1}^{1} u_{x}^{N}(x,t) \frac{d}{dt} u_{x}^{N}(x,t) dx$$

$$= (1/2) \frac{2}{dt} ||u_{x}^{T}(t)||^{2}.$$

Now, for $p = \alpha + 2$, refer to [4],

$$(1/p)\frac{d}{dt} \|u^{N}(x,t)\|_{L^{p}(-1,1)}^{p}$$

$$= \int_{-1}^{1} |u^{N}(x,t)|^{\alpha} u^{N}(x,t) u_{t}^{N}(x,t) dx$$

$$= \int_{-1}^{1} |u^{N}(x,t)|^{\alpha} u^{N}(x,t) (1-x^{2}) P_{N-2} u_{t}^{N}(x,t) dx$$

We can choose the β which satisfies $\| u^N - I_N u^N \|_w^2 = \| u^N - P_N u^N \|_w^2 + \| R_N u^N \|_w^2$.

$$(1/p)\frac{d}{dt} \| u^{N}(x,t) \|_{L^{p}(-1,1)}^{p}$$

$$\leq \beta \int_{-1}^{1} I_{N} \{ |u^{N}(x,t)|^{\alpha} u^{N}(x,t) \} P_{N-2} u_{t}^{N}(x,t) dx$$

Therefore, from the equation

$$\int_{-1}^{1} [u_{tt}^{N}(x,t) - u_{xx}^{N}(x,t) + I_{N}|u^{N}(x,t)|^{\alpha} u^{N}(x,t)]$$

$$P_{N-2}u_{t}^{N}(x,t)dx$$

$$= \int_{-1}^{1} f(x,t)P_{N-2}u_{t}^{N}(x,t)dx$$

we obtain

$$\begin{split} &(1/2)\frac{d}{dt}\left\|P_{N-2}u_{t}^{N}(t)\right\|_{L_{w}(-1,1)}^{2}+(1/2)\frac{d}{dt}\left\|u_{x}^{N}(t)\right\|^{2}\\ &+(1/p)\beta\frac{d}{dt}\left\|u^{N}(t)\right\|_{L^{p}(-1,1)}^{N}\\ &\leq \int_{-1}^{1}[u_{tt}^{N}(x,t)-u_{xx}^{N}(x,t)+I_{N}|u^{N}(x,t)]P_{N-2}u_{t}^{N}(x,t)\,dx\\ &\leq (1/2)\|f(t)\|_{L_{w}(-1,1)}^{2}+(1/2)\|P_{N-2}u_{t}^{N}(x)\|_{L_{w}(-1,1)}^{2}\\ &\|P_{N-2}u_{t}^{N}(t)\|_{L_{w}(-1,1)}^{2}+\|u_{x}^{N}(t)\|^{2}+(2/p\beta)\|u^{N}(t)\|_{L_{t}(-1,1)}^{N}\\ &\leq \|P_{N-2}u_{t}^{N}(0)\|_{L_{w}(-1,1)}^{2}+\|u_{x}^{N}(0)\|^{2}+(2/p\beta)\|u^{N}(0)\|_{L^{p}(-1,1)}^{N}\\ &+\int_{0}^{t}\|f(s)\|_{L_{w}(-1,1)}^{2}ds+\int_{0}^{t}\|P_{N-2}u_{t}^{N}(s)\|^{2}ds \end{split}$$

Applying Gronwall's inequality we complete the proof. This theorem shows the stability of the approximate solution of u^N for

$$0 = \int_{-1}^{1} (u^{N}(x,0) - u_{0}(x)) u^{N}_{0_{x}} dx$$

$$= -\int_{-1}^{1} (u^{N}_{x}(x,0) - u_{0_{x}}(x)) u^{N}_{0_{x}} dx$$

$$\int_{-1}^{1} u^{N}_{x}(x,0)^{N}_{u_{0}} dx = \int_{-1}^{1} u_{0_{x}}(x) u_{0_{x}}(x) u^{N}_{0_{x}} dx$$

$$\leq c \int_{-1}^{1} u_{0_{x}}(x) u_{0_{x}}(x) dx \leq c ||u_{0}||^{2}_{H_{0}^{1}(\Omega)}$$

3. Convergence

Let R_N be a projection operator from a dense subspace W of D_B upon X_N , where D_B is a set which satisfies the boundary condition of (2). For each $u \in W$, we further require $R_N u$ to satisfy the exact boundary conditions, i.e.,

$$R_N: W \to X_N \cap D_B$$
.

We define the norm $\|g\|_{E^*} = \sup_{u \in E, u \neq 0} \frac{(g, u)}{\|u\|_E}$ for all $g \in E^*$ that is dual of E.

Let $e(x, t) = u^{N}(x, t) - R_{N}u$. We obtain the following theorem.

Theorem 2. Assume that $|u|^{\alpha}u \in H^1(-1,1)$.

$$\begin{aligned} &\|P_{N-2}e_{t}(t)\|_{L_{w}(-1,1)} + \|e_{x}(t)\|^{2} \\ &\leq \{\|P_{N-2}e_{t}(0)\|_{L_{w}(-1,1)}^{2} + \|e_{x}(0)\|^{2} + M^{2}T\}e^{T} \\ &\leq \{\|P_{N-2}e_{t}(0)\|_{L_{w}(-1,1)}^{2} + c\|e_{0}\|_{H_{w}(O)}^{2} + M^{2}T\}e^{T} \end{aligned}$$

proof. From (3), we have

$$\int_{-1}^{1} [u_{tt}^{N}(x,t) - u_{xx}^{N}(x,t) + I_{N}|u^{N}(x,t)|^{\alpha}u^{N}(x,t)]v(x) dx = 0$$

$$t > 0, \text{ for all } v \in P_{N-2}$$

Take $v = e_t(x, t)$

$$0 = \int_{-1}^{1} [u_{tt}^{N} - u_{xx}^{N} + I_{N}|u^{N}|^{a}u^{N}] - (u_{tt} - u_{xx} + |u|^{a}u)e_{t}dx$$

$$= \int_{-1}^{1} (u_{tt}^{N} - R_{N}u_{tt}^{N} + R_{N}u_{tt}^{N} - u_{tt})e_{t}dx$$

$$- \int_{-1}^{1} (u_{xx}^{N} - R_{N}u_{xx}^{N} + R_{N}u_{xx}^{N} - u_{xx})e_{t}dx$$

$$+ \int_{-1}^{1} (I_{N}|u^{N}||^{a}u^{N} - |u|^{a}u)e_{t}dx$$

We get

$$\frac{1}{2} \frac{d}{dt} \|P_{N-2}e_t(t)\|_{L_{w}(-1,1)}^2 + \frac{1}{2} \frac{d}{dt} \|e_x(t)\|^2$$

$$= \int_{-1}^{1} (u_{tt} - R_N u_{tt}^N) e_t + (R_N u_{tt}^N - u_{xx}) e_t$$

$$+ (|u|^{\alpha} u - I_N |u^N|^{\alpha} u^N) e_t dx$$

We refer to [1]: For each $v \in H_0^1(-1,1)$

$$(P_{N-2}(u_{tt}-R_Nu_{tt}),v)$$

$$=(u_{tt}-R_Nu_{tt},v)-(u_{tt}-R_Nu_{tt},v-P_{N-2}v)$$

$$=((u_{tt}-R_Nu_{tt})_x,(\phi-R_N\phi)_x)-(u_{tt}-R_Nu_{tt},v-P_{N-2}v)$$

where ϕ is the only function in $H_0^1(-1,1)$ satisfying $-\phi_{xx}=v$,

then we obtain,

$$||P_{N-2}(u_t-R_Nu_t)||_{E^*} \le CN^{1-m}||u_t||_{H^{m-2}(-1,1)}$$

For each $v \in H_0^1(-1,1)$

$$(P_{N-2}(u-R_Nu)_{xx}, v)$$

$$= -((u-R_Nu)_x, v_x) - ((u-R_Nu)_{xx}, v-P_{N-2}v)$$

$$= -((u-R_Nu)_x, v_x) - (u_{xx}-P_{N-2}u_{xx}, v-P_{N-2}v)$$

here we have used the fact that both $P_{N-2}u_{xx}$ and $(R_Nu)_{xx}$ are orthogonal to $v-P_{N-2}v$. Using the same approximation results as before, we deduce

$$||P_{N-2}(u-R_Nu)_{xx}||_{E^*} \le CN^{1-m}||u||_{H^{m-2}(-1,1)}.$$

In Legendre approximations, for all $u \in H^m(-1,1)$

$$||u - I_N u||_{H^1(-1,1)} \le CN^{2l + \frac{1}{2} - m} ||u||_{H^m(-1,1)}$$

for $0 \le l \le m$ with $m > \frac{1}{2}$.

Assume that $|u|^a$ $u \in H^1(-1,1)$, let l = 0. We get

$$|||u|^{\alpha}u - I_{N}|u^{N}|u^{N}||_{L^{2}(-1,1)} = |||u|^{\alpha}u - I_{n}|u|^{\alpha}u||_{L^{2}(-1,1)}$$

$$\leq CN^{\frac{1}{2}-m}|||u|^{\alpha}u||_{H^{m}(-1,1)}$$

We may assume that m > 2.

Let
$$M = CN^{1-m} \| u_{tt} \|_{H^{m-2}(-1,1)} + CN^{1-m} \| u \|_{H^{m}(-1,1)} + CN^{-\frac{1}{2}} \| \| u \|^{\alpha} u \|_{H^{m-2}(-1,1)}$$

clearly $M \rightarrow 0$ as $N \rightarrow \infty$. From (5)

$$\frac{1}{2} \frac{d}{dt} \|P_{N-2}e_{t}(t)\|_{L_{w}(-1,1)}^{2} + \frac{1}{2} \frac{d}{dt} \|e_{x}(t)\|^{2} \\
\leq \frac{1}{2} M^{2} + \frac{1}{2} \|P_{N-2}e_{t}(t)\|_{L_{w}(-1,1)}^{2} \\
\|P_{N-2}e_{t}(t)\|_{L_{w}(-1,1)}^{2} + \|e_{x}(t)\|^{2} \\
\leq \|P_{N-2}e_{t}(0)\|_{L_{w}(-1,1)}^{2} + \|e_{x}(0)\|^{2} \\
+ \int_{0}^{t} M^{2} ds + \int \|P_{N-2}e_{t}(x,s)\|_{L_{w}(-1,1)}^{2} ds$$

We, know that $||e_x(0)||^2 \le c ||e_0||^2_{H^2_0(\Omega)}$ and applying Gronwall's inequality we conclude the proof.

4. Numerical results

Set $u^N(x,t) = \sum_{i=0}^N a_i(t) \, l_i(x)$ where $l_i(x)$ is a N-degree Lagrange polynomial with N+1 nodes as $-1 = x_0 < x_1 < x_2 < \cdots < x_N = 1$, $\alpha = 2$. We substitute $u^N(x,t)$ into (2), we get

$$\frac{d^{2}a_{i}(t)}{dt^{2}} - (l_{0}^{"}(x_{i})a_{0}(t) + \dots + l_{N}^{"}(x_{i})a_{N}(t))$$
$$-|a_{i}(t)|^{2}a_{i}(t) = f(x_{i}, t)$$
$$i = 0, 1, 2, \dots, N.$$

in here we use the trick at $|a_i(t)|^2 a_i(t)$. Applying the boundry condition and the difference equation with

$$\frac{d^2 a_i(t)}{dt^2} = \frac{a_i(t_{j+1}) - 2a_i(t_j) + a_i(t_{j-1})}{h^2}$$
$$a_i(t_0) = 0$$
$$a_i(t_1) = hu_1(x_i)$$

where h is a mesh size and $t_i = jh$. For one example, let

$$f(x,t) = -2\sin(\pi x) + |(t-t^2)\sin(\pi x)|^2 (t-t^2)\sin(\pi x)$$
$$+ \pi^2 (t-t^2)\sin(\pi x)$$
$$\frac{\partial u}{\partial t}(x,0) = \sin(\pi x).$$

then we obtain the numerical solution as follows.

Practically, this example has exact solution such that $(t-t^2)\sin(\pi x)$. We can calculate errors. These errors are approximately less than $C\left(\frac{1}{N}\right)^{N-1}hN(N-1)\left(\frac{N}{2}\right)^{N-1}/\left(\frac{N}{2}\right)!$ in that $C\left(\frac{1}{N}\right)^{N-1}$ is estimated from M which is in theorem 2., and $N(N-1)\left(\frac{N}{2}\right)^{N-1}/\left(\frac{N}{2}\right)!$ is calculated by a second order differentiation of N-degree Lagrange polynomial in <Table. 1>. Briefly, the errors are less than $\left(\frac{1}{2}\right)^{N-1}hN(N-1)\left(\frac{N}{2}\right)^{N-1}/\left(\frac{N}{2}\right)!$ and are independent of α .

⟨Table 1⟩ The numerical estimation of u(1/2, 0.01), error and error bound. For time value t we show results by 10th iteration, where $K = \left(\frac{1}{2}\right)^{N-1} hN(N-1) \left(\frac{N}{2}\right)^{N-1} / \left(\frac{N}{2}\right)!$ h=0.001

	Node	Numerical	Exact	Error	K
ľ	N=8	9.913096E-3	9.9E-3	1.3096E-5	1.8229E-5
	N=12	9,900053E-3	9.9E-3	5.3E-8	8.9518E-8

(a) Exact Solution $t \in [0, 0.15]$

(b) Numerical Solution $t \in [0, 0.15]$

(Figure 2) Exact solution and numerical solution when t is from 0 to 0.15 mesh $h\!=\!0.001$

Until the time variable t is small, the numerical solution is stable in (Figure 2), but if t is greater than 0.15, this numerical solution is unstable. In (Figure 3), we show that the numerical solution is not stable when t is greater than 0.15. Nevertheless, this numerical solution is not bad for some small t.

(Figure 3) The difference between numerical solution and exact solution is big when t is greater than 0.15

References

- Claudio Canuto M. Yousuff Hussaini Alfio Quarteroni Thomas A. Zang, Spectral Methods in Fluid Dynamics. Springer_Verlag, 1988.
- [2] Dendy, J. E., An analysis of some Galerkin schemes for the solution of ninlinear time-dependent problems. SIAM J. Numer. Anal.12, pp.541-565, 1975.
- [3] Dupont, T. L., estimates for Galerkin methods for sec-

- ond-order hyperbolic equations. SIAM J. Numer. Anal. 10, pp.392-410, 1973.
- [4] Masanori Hosoya and Yoshio Yamada, On Some nonlinear wave equations I: local existence and regularity of solutions. J. Fac. Sci. univ. Tokyo Sect. IA, Math. 38, pp.225-238, 1991.
- [5] Perring, J. K. and Skyrme, T. R. H, A model unified field equation. Nucl. Phys. 31, pp.550–555, 1962.
- [6] Yves Truginy, Product approximation for nonlinear Klein_Gordon equations., IMA journal of Numerical Analysis. 9, pp.449–462, 1990.

이 인 정

e-mail: leeij@office.hoseo.ac.kr
1981년 전남대학교 수학과 이학사
1984년 중앙대학교 수학과 이학석사
1990년 중앙대학교 수학과 이학박사
2002년 아주대학교 전자공학과 공학박사

1992년~현재 호서대학교 컴퓨터공학부 부교수

관심분야: 영상신호처리, 수치해석, 인공지능