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Numerical Solution for Nonlinear Klein-Gordon Equation by Using
Lagrange Polynomial Interpolation with a Trick

In-Jung Lee’

ABSTRACT

In this paper, by using Lagrange polynomial interpolation with a trick such that for f(x)® we shall use Ax;)*I:(x) instead of 7(x)® where

I(x) = 3 f(x) I,~(x)_

o) wan{ )5

We show the convergence and stability and calculate errors.

These errors are approximately less than

9 )! where N is a polynomial degree.

7IYE - UMY BalpinE o|2YE4A(Non-linear Klein-Gordon Equation), 2t32HH 22ZHLagrange Interpolation)

1. Introduction

The nonlinear Klein Gordon equation

2

at‘? — Lut+ V()= f

oY)

in R%(d=1,2,3),
V.{#) is the derivative of the “Newtonian potential func-

where 4is the Laplacian operator

tion” V, and f is a source term independent of the sol-
ution #, in various areas of mathematical physics. Among
the particular cases which are the practical relevance, we
take V(@)= | «|®u with @>0 (quantum mechanics), re-
fer tol5].

The convergence of the Galerkin finite element method
fcr second order hyperbolic equations has been studied by

% o] ERL NMUE SAYEE SedTEAud] oot ATHAL,
t 28 A sAYgR AFHBAR
=ERS 2004 649 29, AAGE 120049 119 9Y

. .

many authors : cf. among others Dupont[3], who obtained
error estimates for time-discrete and time continuous ap-
proximations of linear problems, and Dendyl2], who ex-
amined nonlinear problems as well as various modified
Galerkin methods. To compute the nonlinear term, the
product approximation is used by Yves Tourigny[6]. This
approximation is a technique which consists of replacing
the nonlinear term by its interpolant in the finite-dimen-
sional subspaces. This provides an interesting alternative
to numerical quadrature and greatly eases the implemen-
tation of the Galerkin method. . A

In this paper, by using Lagrange polynomial interpol-
ation with a trick such that let I(x) be an interpolation
function with n-node %; of an arbitrary function f(x), if
we need an interpolation for 7(x)?% then we shall use

f(x,)*Ix) instead of I(x)® where I(x)=zi‘,f(x,-)1,»(x),

3%u
we get the numerical solutions of (1) when du= §a2
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We show an example about F(x)3 f(x;);(x),1(x)?
where f(x) = sinx has 15 nodes in (Figure 1).
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(Figure 1) f(x)®and I(x)3are same for every point but 7(x)3
I{x) has some difference at near the boundary

To show the stability and convergence, we set as many
distinct points

xp k € J (a set of indices)

in the domain £ or in its boundary 9.2, as the dimension
of the space Polx{£). At the number of these points, lo-
cated on a2 the boundary conditions are imposed. The
remaining points are used to enforce the differential
equation.

We assume that for any k2 € J there exists a poly-
nomial ¢, € Polx{8), necessarily unique, such that

(1 if k=m,
¢k("m)‘{o i BEm.

The #+'s form a basis for the polynomials of degree N,
since v(x) = ;E",]v(xk)qﬁk(x) for all v <€ Polp( D), Let J
be divided into two disjoint subsets J. and J», such that
if k= Jy, the x4'S are on the part 92 of the boundary.
Moreover, let Ly be an approximation to the operator L
in which derivatives are taken at the points %'S. The pol-

ynomial #" € Poly(82) is a solution that satisfies the

equations

{ Ly (x)=f(x,) forallke ],
Bu"(x,)=0 for all k < J,.

The unknowns in this method are the values of «" at the
points ¥4’S, i.e, the coefficients of «" with respect to the
Lagrange polynomial. We consider a bilinear form (%, )y
on the space C°(£2) of the functions continuous up to the
boundary of 2 by fixing a family of weights @& and set—
ting

(w,0)= 3 ulxy) v(xp) wy.

ke]

The existence of the basis ensures that (%, )y is an in-
ner product on Poly(£). Consequently, we define a dis-

crete norm on Poly(£2) as

1
lal y= {(u,2)y} ? for u & Poly(8).

The basis of #+'S is orthogonal under the discrete inner
product. We make the assumption that the nodes {x:}

and the weights {w.} are such that
(u, ) y= (u, ) for all u,v such that #v € Polyy_ (),

In all the applications, this assumption is fulfilled since
the %¢'s are the knots of quadrature formulas of Gaussian
type.

Let Xn be the space of the polynomials of degree less
than or equal to which satisfy the boundary conditions,

ie,
Xy={ve Poly(2) | Bv(x,)=0 for all ke J,} .
Then this method is equivalently written as

{ e Xy
(Lyu®, ¢,)={(f, ¢,)y for all ks J,.

If Yy is the space spanned by the ¢:'s with 2 € /.. ie,
Yy={ve Poly(Q) | v(x,) =0 for all ke J,},
then can be written as

{uNE XN
(Lyu™,v)=(f,v)y for all v e Yy.

2. Stability

Let £ be an interval [-1,1). We would like to approx-
imate the solution of the following problem

9%u %u

at? dx?

tlul®u=71 1 0= oxl0, 70

du
u(.,0) = %y and ( ot )(.,0)=u1 in £

u(—1,8)=u(1,t)=0 for t= [0, T}

where %y € Hy(2),u, € L(Q) and fe L(Q) are given
functions, a small 7 ) 0.
The solution #™(x,#) of the Legendre Tau approx-



imation of this problem is for all # > 0 a polynomial of
degree N in x, which is zero at x = +1 and satisfies the

equations,

J _lltuka, £) — ull(x, &) + 1" (x, D14 (x, £)]o(x)dx
= f_llf(xv Bo(x)de t> 0, forall t & Py_,
fjl[ u"(%,0) — up(x)]w(x)dx =0

[ [, 0 = (T dr = 0 a)

Lat we set Xy={uePylu(-1)=2(1)=0}, Yy=Py_,,
1
and (% v):f_lu(x)v(x)dx' For all #€ Xy we have
1 1 1
f_luxxPN—zudxz - f;lugudx= f_l(ux)zdx

But, we know that the degree of |#”(|?«" is greater
than 2N-1. Here, we shall use the approximation of
le¥1°%Y in (3). We substitute Iyl #"1“u" instead of
l2M1%a" where Iv: C(£) — Xy is the interpolation
operator.

We shall find the approximate solution #y€ Xy such
that

S G B = i, O+ I ()10, DI
= f_llf(x, Du(x)dx  t>0, forall t & Py_,,

S 1 (0 = (Vo) =0

I 1 0 = (Vo =0 @

Theorem 1. For some T'> 0,

1Py a1+ YOI+ QBIPI DN, |

<{Py_qul O3 =1+ 1M ON2+ 2B/ PO 5y

T
+ LA o p ds)e

proof. Take v € Poly_,u; | from the left hand -side first

term in (4)
1
f_l wyx, Py _yul(x, t)dx
= [0 Pacyude ) Pa_yul e, )1~ 2)de
d N 2 -
= (1/2)—6#‘”131\;_2“; N % -1, 00

end the second term,

clgth B7ZtE AIBT HiMy Sotel D= ol2YdAe SX6 573

- f_lluﬁ(x, ) Py_oul(x, t)dx
1 d
=f_lug(x,t)PN_z-E-uN(x,t)dx
1 d
=f_luf'(x,t);uﬁ’(x,t)dx
— 2 T
a .

Now, for p= a+2, refer to [4],

d
/D llee™Ce, M 22,
= f_lliu M, 190 Mo, £)u M (x, t)dx

= [ b 1 N, X1 5Pyl Dl

We can choose the 8 which satisfies Il " — Iy 1% =

eV — Prad||%,+ IRy 2112,

d
(1/1))?#— FaCe, I 501y
1
s,Bf_lIN {1, ) u™ (x, )} Py _puf (%, t) dx
Therefore, from the equation

I e ) = e, )+ Il e 1) 10 (e, )]

PN_zutN(x, t)dx

1
= [ O DPy_yul(x, )

we obtain

d d
(1/2)d—tHPN_2us(t)|| §w<_1,l)+(1/2)a,—tHu,ﬁv(t)ll2

d
/DB w Ol By

< f_ll[u{,v(x, £)— uN(x, ) + Iyl w¥(x, )1Py_yu(x, t) di
SO E oy + QA2NPy— 2 11 3 -y )
Py e 2y + e (O + 27 8B Y1y

<l Py gt O oqp + e MO+ 2/ s ™ N Y
¢t t
+ LA L nds+ [ 1 Pyoyul(o)lids
Applying Gronwall’s inequality we complete the proof.

This theorem shows the stability of the approximate

solution of #” for
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0= fvll(uN(x,O)—uo(x))uNoudx
—— [ 0~ o ()

f ul(x, O)N dx = fjluol(x)uox(x)uf{dx

1
Scfﬂluox(x) 2y (%) dx < ¢l 2l %,(1](9)

3. Convergence

Let By be a projection operator from a dense subspace
W of Dg upon Xn, where Dp is a set which satisfies the
boundary condition of (2). For each « € W, we further re-
quire Byu to satisfy the exact boundary conditions, i.e.,

v W— XyN Dg,

(g,2)

= SUDP ,eE 40 Mzl
E

We define the norm el e

for all g= E* that is dual of E.
Let e(x, t) = «"(x,)— Ryu. We obtain the following

theorem.
Theorem 2. Assume that | #]® we H'(—1,1).

Il Py_pe ()l 1.t e, e
<{ll Py—ze (O 5 —1y +le 012+ M2TYeT

<{IPy—e Ol & 1t cliegl by g+ M*Tle”
proof. From (3), we have
[ talie, ) = a1 + Iyl w¥(x, D17 (e, 10(x) di = 0
t> 0, for all v € Py_»
Take v = e,(x,t)
0= fl Loy — a + Iyl 6101 — Cuy— e+ | wl® we,dx
f (ulf — Ryull+ Ryull— uy)e,dx
-~ f_l(uﬁ—-RNug-!- Ryull—u, e, dx
+ f_ll(INl wll®uN — | ul®u)e,dx

We get

1 d
2—_IfIIPN zet(t)” Lu(— 11)+ ”e (t)llz

f~1 (uy — Ryul de,+ (RNutI,V— Uy) ey

+ (ul®u— Iyl u™|%u™)e,dx

We refer to [1] : For each v € Hy(—1,1)

(Py—3(uy— Ryuy),v)
=(uy — Ryuy, v) —(uy— Ryuy, v—Py_,0)
=((uy— Ryuy),.(¢— Ryd),) — (sy— Ryuty, v—Py_,0)

where ¢ is the only function in Hy(—1,1) satisfying

_ ¢xx —
then we obtain,

” PN—Z(utt_RNutt)” E'S CNl_m”utt” m—Z(_l_l)_

For each ve H{(—1,1)

(Py_(u—Ryu),,, v)

=—((u~ Ryw),,v,) — ({(u— Ryw),,, v— Py_50)

=_((u— RNu)x’ Ux)_(uxx_PN—qux, V_PN—ZU)

here we have used the fact that both Pw-2%. and
(Ry%) .. are orthogonal to ?— Py—2%. Using the same
approximation results as before, we deduce

I1Py-p (= Ryt) el o< CNT " el yeery .

In Legendre approximations, for all « € H”(—1,1)

204 ——
u— INu” H'(—l,l)s CN 2 ” u“ H™"(—1,1)

I
for 0< /< m with ™’ 9.
Assume that | #]® we H'(—1,1), let = 0. We get

Mol e~ Il 2®1a®I oy y=Wal®u— Ll wl®ull oy

1

<CN? el ull gy y

We may assume that m > 2.

Let M= CN'""llayl yo-sioyy+ CNT" "Ml oy

Nlﬁ—-

+ CN 2 Wal®ull ey gy

clearly M— 0 as N— . From (5)

1 1
Z—-I”PN zet(t)” L(— 11)+ “e;;(t)llz
1 2 1 2
SE‘M +2_|| Py e 7 -1

”PN—zet(t)“ i.,(-l.l) + Hex(t)llz

< [ Py_ze 01§ <1+ e (0)I?

t
+f0M2ds+ flIPN_Ze,(x,s)II i(-1nds



We, know that lle,OH2< cll gl ?1%](9) and applying

Gronwall's inequality we conclude the proof.

4. Numerical resulis

N
N —
Set “ (x’t)_,;; a0 where £,(x) is a N-degree
Lagrange polynomial with N+ 1 nodes as —1 = %< x; <

%,{<Kxy=1 g=2 We substitute 2"(x,t) into (2),
we get

dza,'(t)

il _(lé)l(xi)ao(t)"’""‘f'le(xi)aN(t))

—la(t)Pa,(t)=F(x;, t)
i=0,1,2,,N.

in here we use the trick at |a;(£)I%a;(¢).

Aoplying the boundry condition and the difference equa-
tion with

d%a,(t) a(t)—2a(t))+alt;_,)
dtt »?
a{ty) =0
alt) = hu(x;)

where % is a mesh size and ¢, = 7% For one example, let

Flx, 8) =—2sin(ax) +1(t— t?)sin(zx)|2(t— ¢2)sin (7 x)

+ 7%(t—tHsin(7x)
ou

Y, (x,0)= sin(irx),

then we obtain the numerical solution as follows.

Practically, this example has exact solution such that

(t—t¥sin(xx). We can calculate errors. These errors
N-1

1 N-1 )
are approximately less than C(F) hN(N—1) (_2- /

(N )‘ 1 N-1
‘9 /' in that C(]_V'_) is estimated from M which is

N

N-1
in theorem 2., and N(N- 1)(2_) /(2_)! is calculated

by a second order differentiation of N-degree Lagrange
polynomial in <Table. 1>. Briefly, the errors are less than

1 N-1 N N-1 N
(2_) AN(N=1) (?) / (2_)’ and are independent

of a

vl
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(Table 1> The numerical estimation of u(1/2, 0.01), error and
error bound. For time value t we show results by

10th iteration, where €= (2—)N— th (N=1) (%)N_l

/(2£)! h=0.001

Node Numerical Exact Error K
N=8 9.913096E-3 99E-3 1.3096E-5 1.8229E-5
N=12 9.900053E-3 99E-3 5.3E-8 8.9518E-8

0.1

0.05

-0.05

(b) Numerical Solution £< [0,0.15]

(Figure 2) Exact solution and numerical solution when t is
from 0 to 0.15 mesh h=0.001

Until the time variable t is small, the numerical solution
is stable in (Figure 2), but if t is greater than 0.15, this
numerical solution is unstable. In (Figure 3), we show
that the numerical solution is not stable when t is greater
than 0.15. Nevertheless, this numerical solution is not bad

for some small t.
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2ol
0.08 ot

-0,05 >

o1 N’"
—0.15

-0.2 NM
-0.25

03 Le———— tectangle: numerical solution
diamond: exact solution

(Figure 3) The difference between numerical solution and
exact solution is big when t is greater than 0.15
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