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EXISTENCE AND MULTIPLICITY OF NONTRIVIAL

SOLUTIONS FOR KLEIN-GORDON-MAXWELL SYSTEM

WITH A PARAMETER

Guofeng Che and Haibo Chen

Abstract. This paper is concerned with the following Klein-Gordon-
Maxwell system:

{

−∆u+ λV (x)u − (2ω + φ)φu = f(x, u), x ∈ R
3,

∆φ = (ω + φ)u2, x ∈ R
3,

where ω > 0 is a constant and λ is the parameter. Under some suitable
assumptions on V (x) and f(x, u), we establish the existence and multi-
plicity of nontrivial solutions of the above system via variational methods.
Our conditions weaken the Ambrosetti Rabinowitz type condition.

1. Introduction

In this paper, we consider the following Klein-Gordon-Maxwell system:

(1.1)

{

−∆u+ λV (x)u − (2ω + φ)φu = f(x, u), x ∈ R
3,

∆φ = (ω + φ)u2, x ∈ R
3,

where ω > 0 is a constant, λ is the parameter and u, φ : R3 → R.
This system appears as a model describing the nonlinear Klein-Gordon field

interacting with the electromagnetic field in the electrostatic field. More specif-
ically, it represents a solitary wave ψ(x) = u(x)eiωt in equilibrium with a purely
electrostatic field E = −∇φ(x) (for more details, see [3, 5, 8, 13] and the ref-
erences therein). The unknowns of the system are the field u associated with
the particle and the electric potential φ. The presence of the nonlinear term
stimulates the interaction between many particles or external nonlinear pertur-
bations.
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As we know, V. Benci and D. Fortunato [3] are the first to consider the
following Klein-Gordon-Maxwell system:

(1.2)

{

−∆u+ [m2
0 − (ω + φ)2]u = f(u), x ∈ R

3,
∆φ = (ω + φ)u2, x ∈ R

3,

where f(u) = |u|q−2u and 4 < q < 6, and obtained the existence of infinitely
many radially symmetric solutions via the variational methods. Azzollini and
Pomponio in [2] established the existence of ground state solutions of system
(1.2) under the following conditions:

(i) 4 ≤ q < 6 and m0 > ω;
(ii) 2 < q < 4 and m0

√
q − 2 > ω

√
6− q.

In [1], Azzollini etal. improved the existence range of (m0, ω) for p ∈ (2, 4) as
follows:

0 < ω < m0g(p),

and

g(p) =

{ √

(p− 2)(4− p), if 2 < p < 3,
1, if 3 ≤ p < 4.

They also considered the limit case that m0 = ω. Cassani in [4] considered

system (1.2) when f(u) = µ|u|p−2u + |u|2
∗−2u, where µ ≥ 0 and p ∈ (4, 6).

Moreover, he obtained the existence of trivial solution via a Pohožaev-type
argument when µ = 0 and proved the existence of nontrivial solutions when
one of the following conditions is satisfied:

(i) p ∈ (4, 6), |m| > |ω| > 0 and µ > 0;
(ii) p = 4, |m| > |ω| > 0 and µ > 0 sufficiently large.

Later, Wang in [15] followed the ideas that appeared in [8] and generalized
the result of [4]. He established the existence of at least a radially symmetric

nontrivial weak solution of system (1.2) when f(u) = µ|u|p−2u + |u|2
∗−2u,

where µ > 0 and one of the following conditions is satisfied:
(i) p ∈ (4, 6), m > ω > 0 and µ > 0;
(ii) p ∈ (3, 4], m > ω > 0 and µ > 0 sufficiently large;

(iii) p ∈ (2, 3], m
√

(p− 2)(4− p) > ω > 0 and µ > 0 sufficiently large.
Applying the Ekeland’s variational principle and the Mountain Pass Theorem
in critical point theory, Xu and Chen in [18] obtained the existence of at least
two nontrivial solutions of problem (1.1) with λ = 1 when f(x, u) = |u|p−1u+
h(x), p ∈ (1, 5).

In recent paper [10], the authors studied the existence of infinitely many
nontrivial solutions of (1.1) with λ = 1 under the following assumptions on
V (x) and f(x, u),

(V1) V ∈ C(R
3,R) satisfies inf

x∈R3
V (x) ≥ a > 0, where a > 0 is a constant.

Moreover, for any M > 0, meas{x ∈ R
3 : V (x) ≤ M} < ∞, where meas

denotes the Lebesgue measure in R
3.
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(f1) f ∈ C(R
3 ×R,R), f(x, t) ≥ 0 for t ≥ 0 and there exist C1, C2 > 0 and

p ∈ [4, 6) such that

|f(x, u)| ≤ C1|u|+ C2|u|
p−1, ∀(x, u) ∈ R

3 × R.

(f2)
F (x,u)
|u|4 → +∞ as |u| → +∞ uniformly in x ∈ R

3.

(f3) Let ˜F = 1
4f(x, t)t − F (x, t), there exists r0 > 0 such that if |t| ≥ r0,

then ˜F ≥ 0 uniformly for x ∈ R
3.

(f4) f(x,−u) = −f(x, u) for all (x, u) ∈ R
3 × R.

Specifically, the authors established the following theorem in [10].

Theorem 1.1 ([10]). Under the assumptions (V1) and (f1)-(f4). Then problem

(1.1) with λ = 1 has infinitely many nontrivial solutions.

Motivated by the above facts, in the present paper, we will study the ex-
istence and multiplicity of nontrivial solutions of problem (1.1) under the as-
sumptions (V1), (f2) and (f4). Instead of (f1) and (f3), we give the following
more general assumptions on f(x, u).

(f ′
1) f ∈ C(R

3 × R,R) and there exist c1, c2 > 0 and p ∈ (2, 6) such that

|f(x, u)| ≤ c1|u|+ c2|u|
p−1, ∀(x, u) ∈ R

3 × R.

(f5) f(x, u) = o(|u|) as |u| → 0 uniformly in x ∈ R
3.

(f6) There exist µ ∈ (4, 6) and r0 > 0 such that

inf
x∈R3,|u|=r0

F (x, u) := β > 0,

and

µF (x, u)− f(x, u)u ≤ C0|u|
2, ∀ x ∈ R

3 and |u| ≥ r0,

where F (x, u) =
∫ u

0 f(x, s)ds and 0 < C0 <
β(µ−2)

r2
0

.

(f7) There exist r > 0 and C > 0 such that

4F (x, u)− f(x, u)u ≤ C|u|2, ∀ x ∈ R
3 and |u| ≥ r.

Evidently, (f7) is weaker than the condition (f3).
Now, we are ready to state the main results of this paper,

Theorem 1.2. Assume conditions (V1), (f
′
1), (f5) and (f6) hold. Then there

exists Λ1 > 0 such that problem (1.1) has at least one nontrivial solution when-

ever λ ≥ Λ1.

Theorem 1.3. Assume conditions (V1), (f
′
1), (f2), (f5) and (f7) hold. Then

there exists Λ2 > 0 such that problem (1.1) has at least one nontrivial solution

whenever λ ≥ Λ2.

To get the existence of infinitely many solutions for the problem (1.1), the
assumption (f5) is not needed. Instead, we need another assumption (V2), but
it is not very restrictive.
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(V2) There exist d > 0 and R0 > 0 such that the set {x ∈ R
3 : V (x) ≤ d} is

nonempty and meas{{x ∈ R
3 : V (x) ≤ d} \ (BR0

∩ {x ∈ R
3 : V (x) ≤ d})} = 0,

where BR0
= {x ∈ R

3 : |x| < R0}.

Theorem 1.4. Assume conditions (V1), (V2), (f
′
1), (f4) and (f6) hold. Then

there exists Λ3 > 0 such that problem (1.1) has infinitely many nontrivial weak

solutions whenever λ ≥ Λ3.

Theorem 1.5. Assume conditions (V1), (V2), (f
′
1), (f2), (f4) and (f7) hold.

Then there exists Λ4 > 0 such that problem (1.1) has infinitely many nontrivial

weak solutions whenever λ ≥ Λ4.

Notation 1.1. Throughout this paper, we shall denote by | · |r the Lr-norm
and C various positive generic constants, which may vary from line to line.
Also if we take a subsequence of a sequence {un} we shall denote it {un} again.

The remainder of this paper is as follows. In Section 2, we mainly consider
the existence of at least one nontrivial solution. In Section 3, the existence of
infinitely many nontrivial solutions is discussed.

2. Existence of nontrivial solutions

In this section, we consider the existence of nontrivial solutions for problem
(1.1).

Define the space

Eλ := {u ∈ H1(R3) |

∫

R3

λV (x)u2 < +∞}.

with the inner product and norm

〈u, v〉Eλ
=

∫

R3

(∇u∇v + λV (x)uv)dx, ‖u‖Eλ
= 〈u, u〉

1
2

X .

Moreover, by Lemma 3.4 in [19], we know that under the assumption (V1),
the embedding Eλ →֒ Lr(R3) is continuous for 2 ≤ r ≤ 6 and Eλ →֒ Lr(R3) is
compact for 2 ≤ r < 6, i.e., there exists constants τr such that

(2.1) ||u||r ≤ τr||u||Eλ
.

Note that problem (1.1) has a variational structure and its solution can be
regarded as critical point of the energy functional defined on the space Eλ by

J(u, φ) =
1

2
||u||2Eλ

−
1

2

∫

R3

|∇φ|2dx−
1

2

∫

R3

(2ω + φ)φu2dx−

∫

R3

F (x, u)dx.

Under the assumptions (V1) and (f ′
1), the functional J belongs to C1(Eλ,R)

and also exists a strong indefiniteness. To avoid the indefiniteness, we can
apply a reduction method described in [6, 18], by which we are led to study a
one variable functional that does not present such a strong indefinite nature.
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Lemma 2.1 ([8, 18]). For every u ∈ Eλ there exists a unique φu ∈ D
1,2(R3)

which solves ∆φ = (ω + φ)u2. Furthermore

(i) In the set {x : u(x) 6= 0}, we have −ω ≤ φu ≤ 0 for ω > 0.
(ii) If u is radially symmetric, φu is radial too.

According to Lemma 2.1, we can consider the functional I : Eλ → R defined
by I(u) = J(u, φu). After multiplying ∆φu = (ω+φu)u

2 by φu and integration
by parts, we obtain

(2.2)

∫

R3

|∇φu|
2dx = −

∫

R3

(φu)
2u2dx−

∫

R3

ωφuu
2dx.

Therefore, the reduced functional takes the form

(2.3) I(u) =
1

2
||u||2Eλ

−
1

2

∫

R3

ωφuu
2dx−

∫

R3

F (x, u)dx.

Moreover, I is C1 and we have for any u, v ∈ Eλ,

(2.4) 〈I ′(u), v〉 =

∫

R3

(∇u∇v + λuv − (2ω + φu)φuuv)dx−

∫

R3

f(x, u)vdx.

Remark 2.1. By (2.2) and Hölder inequality, we have

||φu||
2
D1,2(R3) ≤

∫

R3

ω|φu|u
2dx ≤ ω||φu||6||u||

2
12
5

,

then

(2.5)
||φu||D1,2(R3) ≤ C||u||

2
12
5

,

∫

R3

ω|φu|u
2dx

≤ C||φu||D1,2 ||u||212
5

≤ C||u||412
5

≤ C||u||4Eλ
.

Now we can apply Lemma 2.2 of [7] or Lemma 2.3 of [18] to our functional
I and obtain:

Lemma 2.2 ([7, 18]). The following statements are equivalent:
(i) (u, φ) ∈ Eλ×D

1,2(R3) is a critical point of I (i.e., (u, φ) is a solution of

problem (1.1)).
(ii) u is a critical point of I and φ = φu.

Lemma 2.3 ([11], Mountain Pass Theorem). Let E be a real Banach space

with its dual space E∗, and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
||u||=ρ

I(u)

for some µ < η, ρ > 0 and e ∈ E with ||e|| > ρ. Let c ≥ η be characterized by

c = inf
γ∈Γ

max
0≤τ≤1

I(γ(τ)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous paths

joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un)→ c and (1 + ||un||)||I
′(un)|| → 0, n→∞.
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Lemma 2.4 ([9, Theorem A.2]). Let Ω be an open set in R
N and f ∈ C(Ω×

R,R) be a function such that |f(x, u)| ≤ c(|u|r + |u|s) for some c > 0 and

1 ≤ r < s <∞. Suppose that s ≤ p <∞, r ≤ t <∞, t > 1, {un} is a bounded

sequence in Lp(Ω)∩Lt(Ω), un → u a.e. in Ω and in Lp(Ω∩BR)∩L
t(Ω∩BR)

for all R > 0. Then, passing to a subsequence, there exists a sequence {vn}
such that

vn → u in Lp(Ω) ∩ Lt(Ω)

and

f(x, un)− f(x, un − vn)− f(x, u)→ 0, in Lt/r(Ω) + Lp/s(Ω),

where vn(x) = χ(2|x|/Rn)u(x), χ ∈ C∞(R, [0, 1]) be such that χ(t) = 1 for

t ≤ 1, χ(t) = 0 for t ≥ 2, Rn > 0 is a sequence of constants with Rn → ∞ as

n→∞, the space Lp(Ω)∩Lt(Ω) has the norm ||u||p∧t := ||u||p + ||u||t and the

space Lp(Ω) + Lt(Ω) with the norm

||u||p∨t := inf{||v||p + ||w||t : v ∈ L
p(Ω), w ∈ Lt(Ω), u = v + w}.

Lemma 2.5. Assume that (V1), (f
′
1) and (f6) hold. Then there exists Λ > 0

such that I satisfies the (PS)c condition for all λ ≥ Λ.

Proof. Let {un} be a (PS)c sequence. Firstly, we prove that {un} is bounded
in Eλ for λ > 0 large enough. Arguing by contradiction, we can assume that
||un||Eλ

→ +∞ as n → ∞. Let vn = un

||un||
. Then ||vn|| = 1 and ||vn||r ≤

τr||vn||Eλ
= τr for 2 ≤ r ≤ 6. Set

h(t) := F (x, t−1z)tµ, ∀ t ∈ [1,+∞) and (x, z) ∈ R
3 × R.

Then by (f6), we have

h′(t) = f(x, t−1z)(−
z

t2
)tµ + F (x, t−1z)µtµ−1

= tµ−1
[

µF (x, t−1z)− t−1zf(x, t−1z)
]

≤ C0t
µ−3|z|2,

where |z| ≥ r0 and t ∈ [1, |z|r0
]. Then

h(
|z|

r0
)− h(1) =

∫
|z|

r0

1

h′(t)dt ≤

∫
|z|

r0

1

C0t
µ−3|z|2dt =

C0|z|
µ

(µ− 2)rµ−2
0

−
C0|z|

2

µ− 2
.

Therefore, we have

F (x, z) = h(1) ≥ h(
|z|

r0
)−

C0|z|
µ

(µ− 2)rµ−2
0

≥ (
β

rµ0
−

C0

(µ− 2)rµ−2
0

)|z|µ.

Thus β
rµ
0

− C0

(µ−2)rµ−2

0

> 0 for C0 <
β(µ−2)

r2
0

. Since µ > 4, then there exists a

constant 4 < θ < 6 such that θ < µ, and hence

(2.6) lim
|u|→∞

F (x, u)

|u|θ
= +∞.
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In particularly, we have

(2.7) lim
|u|→∞

F (x, u)

|u|4
= +∞.

From (f ′
1), we have

(2.8) F (x, u) ≤
c1
2
|u|2 +

c2
p
|u|p.

It follows from (2.6) and (2.8) that for any M > 0, there exists a constant
C(M) > 0 such that

(2.9) F (x, u) ≥M |u|θ − C(M)|u|2.

Furthermore, we have

I(un)

||un||θEλ

=
1

2||un||
θ−2
Eλ

−
1

2||un||θEλ

∫

R3

ωφuu
2dx−

∫

R3

F (x, un)

||un||θEλ

dx.

Then by (2.5) and θ > 4, we deduce that

lim
n→+∞

∫

R3

F (x, un)

||un||θEλ

dx = 0.

Since ||vn||Eλ
= 1, going if necessary to a subsequence, we can assume that

vn ⇀ v in Eλ, vn → v in Lr(R3) for 2 ≤ r < 6 and vn → v a.e. in R
3. Set

Ω = {x ∈ R
3 : v(x) 6= 0}. If meas(Ω) > 0, then

∫

Ω
|v|θdx > 0. By (2.9), we

have
∫

R3

F (x, un)

||un||θEλ

dx ≥M ||vn||
θ
θ − C(M)

||vn||
2
2

||un||
θ−2
Eλ

.

Therefore

0 = lim inf
n→∞

(

∫

R3

F (x, un)

||un||θEλ

dx+ C(M)
||vn||

2
2

||un||
θ−2
Eλ

)

≥ lim inf
n→∞

M ||vn||
θ
θ ≥M

∫

Ω

|v|θdx > 0,

which is a contradiction, then meas(Ω) = 0, and as a result v = 0 a.e. in R
3.

Therefore, from (V1), we have

||vn||
2
2 =

∫

V (x)≥1

|vn|
2dx+

∫

V (x)<1

|vn|
2dx ≤

1

λ
||vn||

2
Eλ

+ o(1) ≤
2

λ

for n large enough. It follows from (f ′
1) and (f6) that there exists a constant

c > 0 such that

µF (x, u)− uf(x, u) ≤ c|u|2
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for all (x, u) ∈ R
3 × R. Therefore, by Lemma 2.1 and µ ∈ (4, 6), we have

0←
1

||un||2Eλ

[

µI(un)− 〈I
′(un), un〉

]

=
1

||un||2Eλ

[µ− 2

2
||un||

2
Eλ

+
4− µ

2

∫

R3

ωφun
u2ndx

+

∫

R3

(

f(x, un)un − µF (x, un)
)

dx+

∫

R3

φ2un
u2ndx

]

≥
µ− 2

2
− c

∫

R3

|vn|
2dx

≥
µ− 2

2
−

2c

λ
.

Let λ > 0 so large that the term µ−2
2 −

2c
λ > 0, then we get a contradiction.

Hence, {un} is bounded in Eλ for large λ. Therefore, going if necessary to a
subsequence, there exists u ∈ Eλ such that

(2.10) un ⇀ u, in Eλ.

(2.11) un → u, in Lr(R3), 2 ≤ r < 6.

(2.12) un → u, a.e. in R
3.

Take vn(x) = χ(2|x|Rn
)u(x), where Rn > 0 is a sequence of constants with

Rn → +∞ as n → +∞. We claim that vn → u in Eλ. Indeed, u ∈ Eλ

implies that for any ε > 0, there exists a ρ = ρ(ε) such that

(2.13)

∫

R3\Bρ(0)

|∇un|
2dx ≤ ε and

∫

R3\Bρ(0)

λV (x)|un|
2dx ≤ ε.

Hence, by (2.13), we have

||vn − u||
2
Eλ

=

∫

R3

|∇(vn − u)|
2dx+

∫

R3

λV (x)|vn − u|
2dx

=

∫

R3

|∇(χ(
2|x|

Rn
)u − u)|2dx+

∫

R3

λV (x)|χ(
2|x|

Rn
)u− u|2dx

≤

∫

R3

|χ(
2|x|

Rn
)− 1|2|∇u|2dx + (

2

Rn
)2
∫

R3

|χ′(
2|x|

Rn
)|2|u|2dx

+

∫

R3

λV (x)|χ(
2|x|

Rn
)− 1|2|u|2dx

≤

∫

Bρ(0)

|χ(
2|x|

Rn
)− 1|2|∇u|2dx+ (

2

Rn
)2
∫

R3

|χ′(
2|x|

Rn
)|2|u|2dx

+

∫

Bρ(0)

λV (x)|χ(
2|x|

Rn
)− 1|2|u|2dx+ cε.
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Therefore, by the Lebesgue dominated convergence theorem, we have

(2.14) ||vn − u||Eλ
→ 0 as n→ +∞.

Furthermore, by the Hölder inequality, we have

(2.15)

〈I ′(un)− I
′(vn), un − vn〉

= ||un − vn||
2
Eλ
−

∫

R3

(f(x, un)− f(x, vn))(un − vn)dx

+ 2ω

∫

R3

(φun
un − φvnvn)(un − vn)dx

+

∫

R3

(φ2un
un − φ

2
vnvn)(un − vn)dx.

Since un ⇀ u in Eλ and I ′(un) → 0, we have 〈I ′(un) − I
′(u), un − u〉 → 0 as

n→ +∞. By ||vn − u||Eλ
→ 0, I ∈ C1(Eλ,R) and the boundedness of {un} in

Eλ, we have

(2.16)

∣

∣〈I ′(un)− I
′(vn), un − vn〉

∣

∣

≤
∣

∣〈I ′(un)− I
′(u), un − vn〉

∣

∣+
∣

∣〈I ′(u)− I ′(vn), un − vn〉
∣

∣

≤
∣

∣〈I ′(un)− I
′(u), un − u〉

∣

∣+
∣

∣〈I ′(un)− I
′(u), u− vn〉

∣

∣

+
∣

∣〈I ′(u)− I ′(vn), un − vn〉
∣

∣

→ 0 as n→ +∞.

Meanwhile, by (2.5), (2.11), (2.14) and Lemma 2.1, we have

(2.17)

|2ω

∫

R3

(φun
un − φvnvn)(un − vn)dx|

= |2ω

∫

R3

φun
un(un − vn)dx− 2ω

∫

R3

φvnvn(un − vn)dx|

≤ 2ω||φun
un||2||un − u||2 + 2ω||φun

un||2||u − vn||2

+ 2ω||φvnvn||2||un − u||2 + 2ω||φvnvn||2||u− vn||2

≤ C||φun
||6||un||3(||un − u||2 + ||vn − u||2)

+ C||φvn ||6||vn||3(||un − u||2 + ||vn − u||2)

→ 0 as n→∞,

and

|

∫

R3

(φ2un
un − φ

2
vnvn)(un − vn)dx|

= |

∫

R3

φ2un
un(un − vn)dx −

∫

R3

φ2vnvn(un − vn)dx|(2.18)

≤
(

∫

R3

φ6un
dx

)
1
3
(

∫

R3

|un − u|
3
2 |un|

3
2 dx

)
2
3
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+
(

∫

R3

φ6un
dx

)
1
3
(

∫

R3

|vn − u|
3
2 |un|

3
2 dx

)
2
3

+
(

∫

R3

φ6vndx
)

1
3
(

∫

R3

|un − u|
3
2 |vn|

3
2 dx

)
2
3

+
(

∫

R3

φ6vndx
)

1
3
(

∫

R3

|vn − u|
3
2 |vn|

3
2 dx

)
2
3

≤ C||un||
4
Eλ
||un||3(||un − u||3 + ||vn − u||3)

+ C||vn||
4
Eλ
||vn||3(||un − u||3 + ||vn − u||3)

→ 0 as n→ +∞.

Now, we prove that |
∫

R3(f(x, un) − f(x, vn))(un − vn)dx| → 0 as n → +∞.
Take r = 1, s = p− 1. It follows from Lemma 2.4 that

gn(x)→ 0, in L2(R3) + L
p

p−1 (R3),

where gn(x) = f(x, un)− f(x, u)− f(x, un − vn). Then
∫

R3

|f(x, un)−f(x, u)−f(x, un−vn)||un−vn|dx ≤ ||gn||2∨p′ ||un−vn||2∨p → 0,

as n→ +∞, where p′ = p
p−1 . Take un = vn for all n > 0 in Lemma 2.4. Then

f(x, vn)− f(x, u)→ 0, in L2(R3) + L
p

p−1 (R3).

Consequently, we have
∫

R3 |f(x, vn) − f(x, u)||un − vn|dx → 0 as n → +∞.
Then one has

(2.19)

∫

R3

|f(x, un)− f(x, vn)− f(x, un − vn)||un − vn|dx

≤

∫

R3

|f(x, un)− f(x, u)− f(x, un − vn)||un − vn|dx

+

∫

R3

|f(x, vn)− f(x, u)||un − vn|dx

→ 0 as n→ +∞.

Set ωn = un − vn. Then by (V1) and ωn ⇀ 0, we have

(2.20) ||ωn||
2
2 =

∫

V (x)≥1

|ωn|
2dx+

∫

V (x)<1

|ωn|
2dx ≤

1

λ
||ωn||

2
Eλ

+ o(1)

for n large enough. Take 0 < α < min{1, 6−p
2 }. Then 2 < 2(p−α)

2−α < 6. By

(2.20) and the Hölder inequality, we have

(2.21) ||ωn||
p
p ≤ ||ωn||

α
2 ||ωn||

p−α
2(p−α)

2−α

≤ c(λ)−
α
2 ||ωn||

p
Eλ

+ o(1)

for n large enough. Consequently, by (2.11), (2.21) and (f ′
1), one has

(2.22)

|

∫

R3

f(x, ωn)ωndx| ≤ c1||ωn||
2
2 + c2||ωn||

p
p ≤

c1
λ
||ωn||

2
Eλ

+
cc2

(λ)
α
2

||ωn||
p
Eλ

+ o(1)
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for n large enough.
Therefore, it follows from (2.15), (2.16), (2.17), (2.18), (2.22) and the bound-

edness of {ωn} that

o(1) ≥ ||un − vn||
2
Eλ
−

∫

R3

f(x, un − vn)(un − vn)dx

≥ (1 −
c1
λ
−

cc2

(λ)
α
2

||ωn||
p−1
Eλ

)||ωn||
2
Eλ
.

Let Λ > 0 be so large that the term in the brackets above is positive when
λ ≥ Λ, thus we get ωn → 0 as n→ +∞ in Eλ. Since ωn = un− vn and vn → u
in Eλ, then we have un → u in Eλ. The proof is complete. �

Proof of Theorem 1.2. For any 0 < ε < 1
τ2
2

, it follows from (f ′
1) and (f5) that

there exists c(ε) > 0 such that

|F (x, u)| ≤
ε

2
|u|2 +

ε

p
|u|p.

Therefore, for small ρ > 0,

I(u) =
1

2
||u||2Eλ

−
1

2

∫

R3

ωφuu
2dx−

∫

R3

F (x, u)dx

≥
1

2
(||u||2Eλ

− ετ22 ||u||
2
Eλ

)−
ε

p
τpp ||u||

p
Eλ

≥
1

4
(||u||2Eλ

− ετ22 ||u||
2
Eλ

)

for all u ∈ Bρ, where Bρ = {u ∈ Eλ : ||u||Eλ
< ρ}. Hence,

I|∂Bρ
≥

1

4
(1− ετ22 )ρ

2 := η > 0.

Take 0 6= u ∈ Eλ. It follows from (f ′
1) and (2.6) that for any M > 0, there

exists C(M) > 0 such that

F (x, u) ≥M |u|4 − C(M)|u|2.

Then by Lemma 2.1, one has

I(tu) =
t2

2
||u||2Eλ

−
t2

2

∫

R3

ωφtuu
2dx−

∫

R3

F (x, tu)dx

≤
t2

2
||u||2Eλ

+
t2

2

∫

R3

ω2u2dx+ C(M)t2
∫

R3

u2dx−Mt4
∫

R3

u4dx

→ −∞

as t → +∞. Therefore, there exists a point e ∈ Eλ \ Bρ such that I(e) ≤ 0.
By Lemma (2.3), I satisfies the (PS)c condition for large λ > 0. Furthermore,
it is obvious that I(0) = 0. Hence I possesses a critical value c ≥ η by Lemma
2.3, i.e., problem (1.1) has a nontrivial weak solution in Eλ. The proof is
complete. �
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Proof of Theorem 1.3. From the proof of Theorem 1.2, we know that there
exist constants ρ > 0 and η > 0 such that I|∂Bρ

≥ η > 0 and there is a

point e ∈ Eλ \B such that I(e) ≤ 0. Now we prove that I satisfies the (PS)c
condition for large n. We need to prove that {un} is bounded in Eλ. If {un}
is unbounded in Eλ, we can assume that ||un||Eλ

→ +∞ as n → ∞. Let
vn = un

||un||
. Then ||vn|| = 1 and ||vn||r ≤ τr||vn||Eλ

= τr for 2 ≤ r ≤ 6.

Since ||vn||Eλ
= 1, going if necessary to a subsequence, we can assume that

vn ⇀ v in Eλ, vn → v in Lr(R3) for 2 ≤ r < 6 and vn → v a.e. in R
3. Set

Ω = {x ∈ R
3 : v(x) 6= 0}. If meas(Ω) > 0, then

∫

Ω |v|
θdx > 0. It follows from

(f ′
1) and (f2) that for any M > C0

2
∫
Ω
|v|4dx

, there exists a constant C0(M) > 0

such that

(2.23) F (x, u) ≥M |u|4 − C0(M)|u|2,

where

C0 = sup
u∈Eλ\{0}

∫

R3 ω|φu|u
2dx

||u||4Eλ

.

Furthermore, we have

I(un)

||un||4Eλ

=
1

2||un||2Eλ

−
1

2||un||4Eλ

∫

R3

ωφun
u2ndx−

∫

R3

F (x, un)

||un||4Eλ

dx.

Then by (2.5), we deduce that

lim lim inf
n→∞

∫

R3

F (x, un)

||un||4Eλ

dx ≤
C0

2
.

By (2.23), we have
∫

R3

F (x, un)

||un||4Eλ

dx ≥M ||vn||
4
4 − C0(M)

||vn||
2
2

||un||2Eλ

.

Therefore

C0

2
≥ lim inf

n→∞

(

∫

R3

F (x, un)

||un||4Eλ

dx + C0(M)
||vn||

2
2

||un||2Eλ

)

≥ lim inf
n→∞

M ||vn||
4
4 ≥M

∫

Ω

|v|4dx >
C0

2
,

which is a contradiction, then meas(Ω) = 0, and as a result v = 0 a.e. in R
3.

Therefore, from (V1), we have

||vn||
2
2 =

∫

V (x)≥1

|vn|
2dx+

∫

V (x)<1

|vn|
2dx ≤

1

λ
||vn||

2
Eλ

+ o(1) ≤
2

λ

for n large enough. It follows from (f1) and (f7) that there exists a constant
c > 0 such that

4F (x, u)− uf(x, u) ≤ c|u|2
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for all (x, u) ∈ R
3 × R. Therefore, by Lemma 2.1, one has

0←
1

||un||2Eλ

[

4I(un)− 〈I
′(un), un〉

]

=
1

||un||2Eλ

[

||un||
2
Eλ

+

∫

R3

(

f(x, un)un − 4F (x, un)dx
)

+

∫

R3

φ2un
u2ndx

]

≥ 1− c

∫

R3

|vn|
2dx

≥ 1−
2c

λ
as n→∞.

Let λ > 0 be so large that the term 1 − 2c
λ > 0, then we get a contradiction.

Hence {un} is bounded in Eλ for large λ. Therefore, I possesses a critical
value by Lemma 2.3, i.e., problem (1.1) has at least one nontrivial solution.
The proof is complete. �

3. Existence of infinitely many nontrivial solutions

In this section, we consider the existence of infinitely many solutions of
problem (1.1). We will give the proofs of Theorem 1.4 and Theorem 1.5. To
complete the proof, we need the following results.

Lemma 3.1 ([17, Lemma 2.2]). Let X be an infinitely dimensional Banach

space and let I ∈ C1(X,R) be even, satisfy (PS)c condition, and I(0) = 0. If

X = Y ⊕ Z, where Y is finite dimensional and I satisfies

(i) There exists constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α;

(ii) For any finite dimensional subspace ˜X ⊂ X, there is R = R( ˜X) > 0

such that I(u) ≤ 0 on ˜X \BR.

Then I possesses an unbounded sequence of critical values.

Let {ej} be a total orthonormal basis of L2(BR0
) (BR0

appears in (V2)) and
define Xj = Rej , j ∈ N,

Yk = ⊕k
j=1Xj, Zk = ⊕∞

j=k+1Xj, k ∈ N.

Set

Eλ(BR0
) := {u ∈ H1(BR0

)|

∫

BR0

λV (x)u2dx < +∞}

with the norm

‖u‖Eλ(BR0
) =

(

∫

BR0

(|∇u|2 + λV (x)u2)dx
)

1
2 .

Lemma 3.2. Suppose that (V1) is satisfied. Then for 2 ≤ r < 6

βk := sup
u∈Zk,‖u‖Eλ(BR0

)=1

‖u‖Lr(BR0
) → 0 as k → +∞.

Proof. The proof is similar to Lemma 3.2 of [12] or Lemma 3.2 of [16], so we
omit it here. �
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By Lemma 3.2, we can choose an integer m ≥ 1 such that

(3.1)

∫

BR0

u2dx ≤
1

2c1

∫

BR0

(|∇u|2 + λV (x)u2)dx, ∀ u ∈ Zm ∩ Eλ(BR0
),

where c1 appears in (f ′
1). Let γ(x) = 0 if |x| ≤ R0 and γ(x) = 1 if |x| ≥ R0.

Define

(3.2) Y = {(1− γ)u : u ∈ Eλ, (1− γ)u ∈ Ym}

and

(3.3) Z = {(1− γ)u : u ∈ Eλ, (1− γ)u ∈ Zm}+ {γv : v ∈ Eλ}.

Then Y and Z are subspaces of Eλ, and Eλ = Y ⊕ Z.

Lemma 3.3. Suppose that (V1), (V2) and (f ′
1) are satisfied. Then there exist

constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α for large λ.

Proof. It follows from (3.1), (3.3) and (V2) that

(3.4)

||u||22 =

∫

|x|<R0

|u|2dx+

∫

|x|≥R0

|u|2dx

≤
1

2c1
||u||2Eλ

+
1

λd

∫

{x∈R3:V (x)>d}

λV (x)|u|2dx

≤
1

2c1
||u||2Eλ

+
1

λd
||u||2Eλ

, ∀ u ∈ Z.

Therefore, by (2.1), (2.8) and (3.4), we have

I(u) =
1

2
||u||2Eλ

−
1

2

∫

R3

ωφuu
2dx−

∫

R3

F (x, u)dx

≥
1

2
||u||2Eλ

−
c1
2
||u||22 −

c2
p
||u||pp

≥
1

4
||u||2Eλ

−
c1
2λ
||u||2Eλ

−
c2τ

p
p

p
||u||pEλ

≥
1

8
||u||2Eλ

−
c2τ

p
p

p
||u||pEλ

for n large enough. Since 2 < p < 6, then there exist constants ρ, α > 0 such
that I|∂Bρ∩Z ≥ α. The proof is complete. �

Lemma 3.4. Suppose that (f ′
1) and (f2) are satisfied. Then for any finite

dimensional subspace ˜Eλ ⊂ Eλ, there is R = R(˜Eλ) > 0 such that I(u) ≤ 0 on
˜Eλ \BR.

Proof. For any finite dimensional subspace ˜Eλ ⊂ Eλ, by the equivalence of
norms in the finite dimensional space, there is a constant C(4) > 0 such that

||u||44 ≥ C(4)||u||
4
Eλ
, ∀ u ∈ ˜Eλ.
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It follows from (f ′
1) and (2.7) that for any M > C0

2C(4) (where C0 appears in

(2.23)), there exists a constant C(M) > 0 such that

F (x, u) ≥M |u|4 − C(M)|u|2, ∀(x, u) ∈ R
3 × R.

Then

I(u) =
1

2
||u||2Eλ

−
1

2

∫

R3

ωφuu
2dx−

∫

R3

F (x, u)dx

≤
1

2
||u||2Eλ

+
C0

2
||u||4Eλ

+ C(M)||u||22 −M ||u||
4
4

≤ (
1

2
+ C(M)τ22 )||u||

2
Eλ
− (MC(4)−

C0

2
)||u||4Eλ

for all u ∈ ˜Eλ. Hence, there is a large R = R(˜Eλ) > 0 such that I(u) ≤ 0 on
˜Eλ \BR. The proof is complete. �

Proof of Theorem 1.4. Let X = Eλ, Y and Z be defined by (3.2) and (3.3),
respectively. From (f6), Lemma 2.5, Lemma 3.3, Lemma 3.4 and I(0) = 0, we
know that I satisfies all the conditions of Lemma 3.1. Therefore, problem (1.1)
has infinitely many nontrivial weak solutions. The proof is complete. �

Proof of Theorem 1.5. Let X = Eλ, Y and Z be defined by (3.2) and (3.3),
respectively. From the proof of Theorem 1.3 and Theorem 1.4, we know that I
satisfies all the conditions of Lemma 3.1. Therefore, problem (1.1) has infinitely
many nontrivial weak solutions. The proof is complete. �
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