Caicedo Rivas, R.E.;Nieto, M. Paz-Calderon;Kamiyoshi, M.
Asian-Australasian Journal of Animal Sciences
/
제29권4호
/
pp.487-499
/
2016
The aim of the present study was to examine the effects of testosterone (T) and estradiol-$17{\beta}$ ($E_2$) on the production of progesterone ($P_4$) by granulosa cells, and of the $E_2$ on the production of $P_4$ and T by theca internal cells. In the first experiment, granulosa cells isolated from the largest ($F_1$) and third largest ($F_3$) preovulatory follicle were incubated for 4 h in short-term culture system, $P_4$ production by granulosa cells of both $F_1$ and $F_3$ was increased in a dose-dependent manner by ovine luteinizing hormone (oLH), but not T or $E_2$. In the second experiment, $F_1$ and $F_3$ granulosa cells cultured for 48 h in the developed monolayer culture system were recultured for an additional 48 h with increasing doses of various physiological active substances existing in the ovary, including T and $E_2$. Basal $P_4$ production for 48 h during 48 to 96 h of the cultured was about nine fold greater by $F_1$ granulosa cells than by $F_3$ granulosa cells. In substances examined oLH, chicken vasoactive intestinal polypeptide (cVIP) and T, but not $E_2$, stimulated in a dose-dependent manner $P_4$ production in both $F_1$ and $F_3$ granulosa cells. In addition, when the time course of $P_4$ production by $F_1$ granulosa cells in response to oLH, cVIP, T and $E_2$ was examined for 48 h during 48 to 96 h of culture, although $E_2$ had no effect on $P_4$ production by granulosa cells of $F_1$ during the period from 48 to 96 h of culture, $P_4$ production with oLH was found to be increased at 4 h of the culture, with a maximal 9.14 fold level at 6 h. By contrast, $P_4$ production with cVIP and T increased significantly (p<0.05) from 8 and 12 h of the culture, respectively, with maximal 6.50 fold response at 12 h and 6, 48 fold responses at 36 h. Furthermore, when $F_1$ granulosa cells were precultured with $E_2$ for various times before 4 h culture with oLH at 96 h of culture, the increase in $P_4$ production in response to oLH with a dose-related manner was only found at a pretreatment time of more than 12 h. In the third experiment, theca internal cells of $F_1$, $F_2$ and the largest third to fifth preovulatory follicles ($F_{3-5}$) were incubated for 4 h in short-term culture system with increasing doses of $E_2$. The production of $P_4$ and T by theca internal cells were increased with the addition of $E_2$ of $10^{-6}M$. These increases were greater in smaller follicles. These results indicate that, in granulosa cells of the hen, T may have a direct stimulatory action in the long term on $P_4$ production, and on $E_2$ in long-term action which may enhance the sensitivity to LH for $P_4$ production, and thus, in theca internal cells, $E_2$ in short term action may stimulate the production of $P_4$ and T.
부동소수점 제곱근 계산에 많이 사용하는 골드스미트 제곱근 알고리즘은 곱셈을 반복하여 제곱근을 계산한다. 본 논문에서는 골드스미트 제곱근 알고리즘의 반복 과정의 오차를 예측하여 오차가 정해진 값보다 작아지는 시점까지 반복 연산하는 알고리즘을 제안한다. 'F'의 제곱근 계산은 초기값 $X_0=Y_0=T^2{\times}F,\;T=\frac{1}{\sqrt {F}}+e_t$에 대하여, $R_i=\frac{3-e_r-X_i}{2},\;X_{i+1}=X_i{\times}R^2_i,\;Y_{i+1}=Y_i{\times}R_i,\;i{\in}\{{0,1,2,{\ldots},n-1} }}'$을 반복한다 곱셈 결과는 소수점 이하 p 비트 미만을 절삭하며, 절삭 오차는 $e_r=2^{-p}$보다 작다. p는 단정도실수에서 28, 배정도실수에서 58이다. $X_i=1{\pm}e_i$ 이면 $X_{i+1}$ = $1-e_{i+1}$$e_{i+1} {\frac{3e^2_i}{4}{\mp}\frac{e^3_i}} $ +4$e_{r}$이다. $|X_i-1|$ < $2^{\frac{-p+2}{2}}$이면, $e_{i+1}$ < $8e_{r}$ 이 부동소수점으로 표현할 수 있는 최소값보다 작게 되며, $\sqrt{F}${\fallingdotseq}\frac{Y_{i+1}}{T}}$이다. 본 논문에서 제안한 알고리즘은 입력 값에 따라서 곱셈 횟수가 다르므로, 평균 곱셈 횟수를 계산하는 방식을 도출하고, 여러 크기의 근사 역수 제곱근 테이블 ($T=\frac{1}{\sqrt{F}}+e_i$)에서 단정도실수 및 배정도실수의 제곱근 계산에 필요한 평균 곱셈 횟수를 계산한다. 이들 평균 곱셈 횟수를 종래 알고리즘과 비교하여 본 논문에서 제안한 알고리즘의 우수성을 증명한다. 본 논문에서 제안한 알고리즘은 오차가 일정한 값보다 작아질 때까지만 반복하므로 제곱근 계산기의 성능을 높일 수 있다. 또한 최적의 근사 역수 제곱근 테이블을 구성할 수 있다. 본 논문의 연구 결과는 디지털 신호처리, 컴퓨터 그래픽스, 멀티미디어, 과학 기술 연산 등 부동소수점 계산기가 사용되는 분야에서 폭 넓게 사용될 수 있다.
In this paper, we calculate the number of points on elliptic curves $E^{a^3}_0:y^2=x^3+a^3$ over ${\mathbb{F}}_p$ mod 24 and $E^b_0:y^2=x^3+b$ over ${\mathbb{F}}_p$ mod 6, where b is cubic non-residue in ${\mathbb{F}}^*_p$. For example, if p ${\equiv}$ 1 (mod 12) is a prime, and a and a(2t - 3) are quadratic residues modulo p with $3t^2{\equiv}1$ (mod p), then the number of points in $E^{a^3}_0:y^2=x^3+a^3$ is congruent to 0 modulo 24.
A Diophantine m-tuple is a set {a1, a2, …, am} of positive integers such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m. Let Ek be the elliptic curve induced by Diophantine triple {F2k, 5F2k+2, 3F2k + 7F2k+2}. In this paper, we find the structure of a torsion group of Ek, and find all integer points on Ek under assumption that rank(Ek(ℚ)) = 1 and some further conditions.
An H-magic labeling in a H-decomposable graph G is a bijection $f:V(G){\cup}E(G){\rightarrow}\{1,2,{\cdots},p+q\}$ such that for every copy H in the decomposition, $\sum{_{{\upsilon}{\in}V(H)}}\;f(v)+\sum{_{e{\in}E(H)}}\;f(e)$ is constant. f is said to be H-V -super magic if f(V(G))={1,2,...,p}. In this paper, we prove that complete bipartite graphs $K_{n,n}$ are H-V -super magic decomposable where $$H{\sim_=}K_{1,n}$$ with $n{\geq}1$.
In this paper, we study the stochastic integral of processes taking values of generalized operators based on a triple E ⊂ H ⊂ E∗, where H is a Hilbert space, E is a countable Hilbert space and E∗ is the strong dual space of E. For our purpose, we study E-valued Wiener processes and then introduce the stochastic integral of L(E, F∗)-valued process with respect to an E-valued Wiener process, where F∗ is the strong dual space of another countable Hilbert space F.
For a subset $E{\subseteq}\mathbb{R}^d$ and $x{\in}\mathbb{R}^d$, the local Hausdorff dimension function of E at x and the local packing dimension function of E at x are defined by $$dim_{H,loc}(x,E)=\lim_{r{\searrow}0}dim_H(E{\cap}B(x,r))$$, $$dim_{P,loc}(x,E)=\lim_{r{\searrow}0}dim_P(E{\cap}B(x,r))$$, where $dim_H$ and $dim_P$ denote the Hausdorff dimension and the packing dimension, respectively. In this note we give a short and simple proof showing that for any pair of continuous functions $f,g:\mathbb{R}^d{\rightarrow}[0,d]$ with $f{\leq}g$, it is possible to choose a set E that simultaneously has f as its local Hausdorff dimension function and g as its local packing dimension function.
본 연구에서는 쌀 막걸리의 발효제 종류 및 배합비율에 따른 담금유형을 설정하고 품질특성을 비교하였다. 알코올 함량은 담금 (C)형이 13.6%로 가장 높았으며, (D)형 13.5%, (A)형 13.1%, (B)형 12.9% 및 (E)형 12.7% 순이며, 담금 (F)형에서 12.1%로 가장 낮게 나타났다. 발효 후 당도는 담금 (A)-(E)형은 약 $8.6^{\circ}Bx$로 비슷하였으나 담금 (F)형에서는 $5.4^{\circ}Bx$로 낮게 나타났다. 적정산도는 발효 중 큰 변화는 없었으며, pH는 담금 (A)-(E)형에서는 pH 3.8-3.9, 담금 (F)형에서 pH 4.16으로 조금 높게 나타났다. 환원당 함량은 담금 (A)형에서 401.6 mg%로 가장 높았으며, 담금 (B)-(E)형에서는 337.3-380.9 mg%, 담금 (F)형에서는 119.2 mg%로 가장 낮게 나타났다. 알코올 성분 중 methanol, 1-propanol, 2-methyl-1-propanol 및 iso-amylalcohol이 검출되었으며, 발효 동안 증가하는 경향을 나타내었다. 올리고당 함량은 담금 (D)형에서 1251.27 mg%로 가장 높았으며, (E)형 1,219.2 mg%, (C)형 1,141.4 mg%, (A)형 1,049.9 mg%, (B)형 973.8 mg% 순이며, (F)형에서는 608.0 mg%로 가장 낮았다. 총 유리아미노산 함량은 담금 (B)형에서 781.4 mg%로 가장 높았으며, (C)형 703.2 mg%, (D)형 702.6 mg%, (E)형 678.7 mg%, (A)형 630.4 mg% 및 (F)형 328.7 mg% 순으로 나타났다. 휘발성 향기성분은 담금 (A)와 (B)형은 16종, (C)형 15종, (D)형과 (E), (F)형은 14종이 검출되었다. 전반적 기호도는 담금 (A)형과 (C)형에서 유의적인 차이를 나타내었으며, 쓴맛이 강한 (D)형과 (E)형, 단맛이 적은 (F)형에서는 전반적인 기호도 수치가 낮게 나타났다.
For A and B, $-1{\leq}B<A{\leq}1$, let P[A, B] be the class of functions p analytic in the unit disk E with P(0) = 1 and subordinate to $\frac{1+Az}{1+Bz}$. We introduce the class $T_{\alpha}[A,B]$ of functions $f:f(z)=z+\sum\limits_{n=2}^{{\infty}}a_nz^n$ which are analytic in E and for $z{\in}E$, ${\alpha}{\geq}0$, $[(1-{\alpha}){\frac{f(z)}{z}}+{\alpha}f^{\prime}(z)]{\in}P[A,B]$. It is shown that, for ${\alpha}{\geq}1$, $T_{\alpha}[A,B]$ consists entirely of univalent functions and the radius of univalence for $f{\in}T_{\alpha}[A,B]$, $0<{\alpha}<1$ is obtained. Coefficient bounds and some other properties of this class are studied. Some radii problems are also solved.
In this paper we will consider interval-valued martin-gales. We obtain several results parallel to the case of real-valued martingales. For example an $L_1$-bounded interval-valued martingale converges a.e. An interval-valued martingale ${{F_n}^\infty}_{n=1}$ is uniformly in-tegrable if and only if there is an interval-valued random variable F with $\parallel F \parallel _1<\infty$ such that $F_n=E(F\mid A_n)$, for all $n\geq 1$
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.