DIOPHANTINE TRIPLE WITH FIBONACCI NUMBERS AND ELLIPTIC CURVE

Jinseo Park

Abstract

A Diophantine m-tuple is a set $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ of positive integers such that $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. Let E_{k} be the elliptic curve induced by Diophantine triple $\left\{F_{2 k}, 5 F_{2 k+2}, 3 F_{2 k}+\right.$ $\left.7 F_{2 k+2}\right\}$. In this paper, we find the structure of a torsion group of E_{k}, and find all integer points on E_{k} under assumption that $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=1$ and some further conditions.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive integers satisfying the property that the product of any two of them is one less than a perfect square. If the set which consists of rational numbers satisfy the same property, then we call it a rational Diophantine m-tuple. Fermat first found the Diophantine triple $\{1,3,8,120\}$. Many famous mathematicians made lots of results related to the problems of a Diophantine m-tuple, but still there are many open problems. An old conjecture was that there does not exist a Diophantine quintuple. Recently, the conjecture has been proved by B. He, A. Togbé and V. Ziegler [11]. For any Diophantine triple $\{a, b, c\}$ with $a<b<c$, the set $\left\{a, b, c, d_{ \pm}\right\}$is a Diophantine quadruple, where

$$
d_{ \pm}=a+b+c+2 a b c \pm 2 r s t
$$

and r, s, t are the positive integers satisfying

$$
a b+1=r^{2}, \quad a c+1=s^{2}, \quad b c+1=t^{2}
$$

The strong version of the conjecture states that if $\{a, b, c, d\}$ is a Diophantine quadruple and $d>\max \{a, b, c\}$, then $d=d_{+}$. These Diophantine quadruples are called regular.

[^0]In 1969, A. Baker and H. Davenport [1] proved that the Diophantine triple $\{1,3,8\}$ is regular, which implies that it cannot be extended to a quintuple and not the other way round. In 1998, A. Dujella and A. Pethö [8] proved that if the set $\left\{1,3, c_{k}\right\}$ is the Diophantine triple, where

$$
c_{k}=\frac{1}{6}\left[(2+\sqrt{3})(7+4 \sqrt{3})^{k}+(2-\sqrt{3})(7-4 \sqrt{3})^{k}-4\right],
$$

then there are only two numbers c_{k-1} and c_{k+1} which make the set $\left\{1,3, c_{k}\right\}$ to the Diophantine quadruple.

Let F_{n} be the n-th Fibonacci number, defined by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$. In 1977, V. E. Hoggatt and G. E. Bergum [12] conjectured that if $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}, d\right\}$ is a Diophantine quadruple, then d is a unique. The conjecture was proved by Dujella [4] in 1999. There are many papers which contain generalizations of the result of Hoggatt and Bergum [7, 10, 16]. The reason why the extendibility is important is related to the elliptic curves. We should solve the equations

$$
a x+1=\square, b x+1=\square, c x+1=
$$

to extend the Diophantine triple $\{a, b, c\}$ to a Diophantine quadruple. This leads naturally to the following elliptic curve

$$
y^{2}=(a x+1)(b x+1)(c x+1) .
$$

Then we have always integer points
$(0, \pm 1),\left(d_{+}, \pm(a t+r s)(b s+r t)(c r+s t)\right),\left(d_{-}, \pm((a t-r s)(b s-r t)(c r-s t))\right)$, and also $(-1,0)$ if $1 \in\{a, b, c\}$. Dujella [5] proved that the elliptic curve

$$
E: y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1)
$$

has four integer points

$$
(0, \pm 1),\left(16 k^{3}-4 k, \pm\left(128 k^{6}-112 k^{4}-20 k^{2}-1\right)\right)
$$

under assumption that $\operatorname{rank}(E(\mathbb{Q}))=1$. In [18], the author found all integer points on the elliptic curve

$$
y^{2}=\left(F_{2 k} x+1\right)\left(F_{2 k+2} x+1\right)\left(4 F_{2 k+1} F_{2 k+2} F_{2 k+3} x+1\right)
$$

under assumption that the rank of the elliptic curve is 2 . There are various papers which contain similar results $[6,9,10]$.

In this paper, we find the structure of the torsion subgroup of

$$
E_{k}: y^{2}=\left(F_{2 k} x+1\right)\left(5 F_{2 k+2} x+1\right)\left(\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1\right)
$$

and find all integer points on the E_{k} under assumption that $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)=1$ and k is a positive even integer with $k \not \equiv 4(\bmod 6)$. It is obvious that every solution of system

$$
\begin{equation*}
F_{2 k} x+1=\square, \quad 5 F_{2 k+2} x+1=\square, \quad\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1= \tag{1.1}
\end{equation*}
$$

induce an integer point on the elliptic curve E_{k}. The aim of this paper is to prove that the converse of this statement, that is the x-coordinates of all integer points on E_{k} satisfy the system (1.1) under the same conditions.

2. Preliminaries

2.1. Points on the elliptic curve

Let $\{a, b, c\}$ be a Diophantine triple. We should solve the system

$$
\begin{equation*}
a x+1=\square, \quad b x+1=\square, \quad c x+1= \tag{2.1}
\end{equation*}
$$

to extend the Diophantine triple to a Diophantine quadruple. According to this system, we have the following elliptic curve

$$
E: y^{2}=(a x+1)(b x+1)(c x+1) .
$$

There are two obvious rational points

$$
P=(0,1), \quad R=\left(\frac{1}{a b c}, \frac{r s t}{a b c}\right)
$$

where $r=\sqrt{a b+1}, s=\sqrt{a c+1}$ and $t=\sqrt{b c+1}$. Then we wonder which points on E satisfy the system (2.1). We get the answer by the following Propositions.

Proposition 2.1 ([6, Proposition 1]). The x-coordinate of the point $T \in E(\mathbb{Q})$ satisfies (2.1) if and only if $T-P \in 2 E(\mathbb{Q})$.

The following Proposition is called 2-descent proposition which can confirm $T \in 2 E(\mathbb{Q})$.

Proposition 2.2 ([13, 4.1, p. 37], [15, 4.2, p. 85]). Let $P=\left(x^{\prime}, y^{\prime}\right)$ be a \mathbb{Q} rational point on E, an elliptic curve over \mathbb{Q} given by

$$
y^{2}=(x-\alpha)(x-\beta)(x-\gamma),
$$

where $\alpha, \beta, \gamma \in \mathbb{Q}$. Then there exists $a \mathbb{Q}$-rational point $Q=(x, y)$ on E such that $2 Q=P$ if and only if $x^{\prime}-\alpha, x^{\prime}-\beta, x^{\prime}-\gamma$ are all \mathbb{Q}-rational squares.

2.2. Structure of torsion group

Let $E_{\mathbb{Q}}(M, N)$ be the elliptic curve defined by

$$
y^{2}=x^{3}+(M+N) x^{2}+M N x .
$$

Then we can find that the torsion group is classified according to the following Theorem.

Theorem 2.3 ([17, Main Theorem 1]). The torsion subgroups of $E_{\mathbb{Q}}(M, N)$ are uniquely determined by:

- The torsion subgroup of $E_{\mathbb{Q}}(M, N)$ contains $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ if M and N are both squares, or $-M$ and $N-M$ are both squares, or if $-N$ and $M-N$ are both squares
- The torsion subgroup of $E_{\mathbb{Q}}(M, N)$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$ if there exists a non-zero integer d such that $M=d^{2} u^{4}$ and $N=d^{2} v^{4}$, or $M=-d^{2} v^{4}$ and $N=d^{2}\left(u^{4}-v^{4}\right)$, or $M=d^{2}\left(u^{4}-v^{4}\right)$ and $N=-d^{2} v^{4}$ where (u, v, w) forms a Pythagorean triple (i.e., $u^{2}+v^{2}=w^{2}$).
- The torsion subgroup of $E_{\mathbb{Q}}(M, N)$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ if there exist integers a and b such that

$$
\frac{a}{b} \notin\left\{-2,-1,-\frac{1}{2}, 0,1\right\}
$$

and $M=a^{4}+2 a^{3} b$ and $N=2 a b^{3}+b^{4}$.

- In all other cases, the torsion subgroup of $E_{\mathbb{Q}}(M, N)$ is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

The coordinate transformation

$$
x \rightarrow \frac{x}{a b c}, \quad y \rightarrow \frac{y}{a b c}
$$

applied on the curve E leads to the elliptic curve

$$
E^{\prime}: y^{2}=(x+b c)(x+a c)(x+a b)
$$

The following Theorem is more specific to find the structure of a torsion group.
Theorem 2.4 ([6, Theorem 2]). $E^{\prime}(\mathbb{Q})_{\text {tors }} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$.

3. Torsion group on elliptic curve

Let E_{k} be the elliptic curve induced by Diophantine triple

$$
\left\{F_{2 k}, 5 F_{2 k+2}, 3 F_{2 k}+7 F_{2 k+2}\right\}
$$

that is

$$
E_{k}: y^{2}=\left(F_{2 k} x+1\right)\left(5 F_{2 k+2} x+1\right)\left(3 F_{2 k}+7 F_{2 k+2} x+1\right) .
$$

Then we have the elliptic curve
$E_{k}^{\prime}: y^{2}=\left(x+5 F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)\right)\left(x+F_{2 k}\left(3 F_{2 k}+7 F_{2 k+2}\right)\right)\left(x+5 F_{2 k} F_{2 k+2}\right)$
by coordinate transformation

$$
x \rightarrow \frac{x}{5 F_{2 k} F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)}, \quad y \rightarrow \frac{y}{5 F_{2 k} F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)}
$$

Using Theorem 2.3 and Theorem 2.4, we can find the structure of torsion group of E_{k}^{\prime}.

Lemma 3.1. The torsion group of E_{k}^{\prime} is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, that is

$$
E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Proof. It is sufficient to show that there do not exist α and β such that

$$
\begin{gathered}
\frac{\alpha}{\beta} \notin\left\{-2,-1,-\frac{1}{2}, 0,1\right\}, \\
M=F_{2 k}\left(3 F_{2 k}+2 F_{2 k+2}\right)=\alpha^{4}+2 \alpha^{3} \beta
\end{gathered}
$$

and

$$
N=5 F_{2 k+2}\left(2 F_{2 k}+7 F_{2 k+2}\right)=2 \alpha \beta^{3}+\beta^{4} .
$$

Then we have

$$
\begin{equation*}
M+N=\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)^{2}-3 \alpha^{2} \beta^{2} \tag{3.1}
\end{equation*}
$$

Since

$$
F_{2 k} \equiv\left\{\begin{array}{lllll}
0 & (\bmod 8) & \text { if } & k \equiv 0 & (\bmod 6), \\
1 & (\bmod 8) & \text { if } & k \equiv 1 & (\bmod 6), \\
3 & (\bmod 8) & \text { if } & k \equiv 2 & (\bmod 6), \\
0 & (\bmod 8) & \text { if } & k \equiv 3 & (\bmod 6), \\
5 & (\bmod 8) & \text { if } & k \equiv 4 & (\bmod 6), \\
7 & (\bmod 8) & \text { if } & k \equiv 5 & (\bmod 6),
\end{array}\right.
$$

the left side of (3.1) is congruent to 2 or 3 modulo 8 . However, the right side is congruent to $0,1,5$ or 6 modulo 8 . Therefore,

$$
E_{k}^{\prime}(\mathbb{Q})_{\text {tors }} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

There are integer points on E_{k}^{\prime} such that

$$
A_{k}^{\prime}=\left(-5 F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right), 0\right), B_{k}^{\prime}=\left(-F_{2 k}\left(3 F_{2 k}+7 F_{2 k+2}\right), 0\right)
$$

and

$$
C_{k}^{\prime}=\left(-5 F_{2 k} F_{2 k+2}, 0\right)
$$

of order 2 , and the obvious integer point

$$
P_{k}^{\prime}=\left(0,5 F_{2 k} F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)\right) .
$$

Hence, we have the following results.
Corollary 3.2. $E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=\left\{O, A_{k}^{\prime}, B_{k}^{\prime}, C_{k}^{\prime}\right\}$ and $\operatorname{rank}\left(E_{k}^{\prime}(\mathbb{Q})\right) \geq 1$.
Proof. The point P_{k}^{\prime} is not finite order. Hence, $\operatorname{rank}\left(E_{k}^{\prime}(\mathbb{Q})\right) \geq 1$ by Lemma 3.1.

4. Integer points on $\boldsymbol{E}_{\boldsymbol{k}}$

Using Proposition 2.2, we find all integer points on E_{k}^{\prime} under the assumption that $\operatorname{rank}\left(E_{k}^{\prime}(\mathbb{Q})\right)=1$ and some further conditions.

Lemma 4.1. $P_{k}^{\prime}, P_{k}^{\prime}+A_{k}^{\prime}, P_{k}^{\prime}+B_{k}^{\prime}, P_{k}^{\prime}+C_{k}^{\prime} \notin 2 E_{k}^{\prime}(\mathbb{Q})$.
Proof. We have

$$
\begin{aligned}
x\left(P_{k}^{\prime}\right) & =0 \\
x\left(P_{k}^{\prime}+A_{k}^{\prime}\right) & =-F_{2 k}\left(2 F_{2 k}+12 F_{2 k+2}\right) \\
x\left(P_{k}^{\prime}+B_{k}^{\prime}\right) & =-5 F_{2 k+2}\left(4 F_{2 k}+2 F_{2 k+2}\right) \\
x\left(P_{k}^{\prime}+C_{k}^{\prime}\right) & =2\left(F_{2 k}+F_{2 k+2}\right)\left(3 F_{2 k}+7 F_{2 k+2}\right)
\end{aligned}
$$

(1) The case P_{k}^{\prime}.

If $P_{k}^{\prime} \in 2 E(\mathbb{Q})$, then the numbers

$$
\left\{\begin{array}{l}
5 F_{2 k} F_{2 k+2}, \\
F_{2 k}\left(3 F_{2 k}+7 F_{2 k+2}\right), \\
5 F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)
\end{array}\right.
$$

are all squares.
(a) For $k \equiv 0(\bmod 3), 5 F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right)$ is congruent to 3 modulo 4. So, this number cannot be a square.
(b) For $k \equiv 1(\bmod 3), 5 F_{2 k} F_{2 k+2}$ is congruent to 3 modulo 4 , which means this number cannot be a square.
(c) For $k \equiv 2(\bmod 3), F_{2 k}\left(3 F_{2 k}+7 F_{2 k+2}\right)$ is congruent to 3 modulo 4 . Therefore, this number cannot be a square.

Hence, we have $P_{k}^{\prime} \notin 2 E(\mathbb{Q})$.
(2) The case $P_{k}^{\prime}+A_{k}^{\prime}$.

Suppose that $P_{k}^{\prime}+A_{k}^{\prime} \in 2 E(\mathbb{Q})$. Then the numbers

$$
\left\{\begin{array}{l}
-2 F_{2 k}^{2}+3 F_{2 k} F_{2 k+2}+35 F_{2 k+2}^{2} \\
F_{2 k}^{2}-5 F_{2 k} F_{2 k+2} \\
-2 F_{2 k}^{2}-7 F_{2 k} F_{2 k+2}
\end{array}\right.
$$

are all squares, but there is a contradiction by following results.
(a) For $k \equiv 0(\bmod 3),-2 F_{2 k}^{2}+3 F_{2 k} F_{2 k+2}+35 F_{2 k+2}^{2}$ is congruent to 3 modulo 4. This means this number cannot be a square.
(b) For $k \equiv 1(\bmod 3), F_{2 k}^{2}-5 F_{2 k} F_{2 k+2}$ is congruent to 2 modulo 4 . This means this number cannot be a square.
(c) For $k \equiv 2(\bmod 3),-2 F_{2 k}^{2}-7 F_{2 k} F_{2 k+2}$ is congruent to 2 modulo 4. This means this number cannot be a square.

Hence, we have $P_{k}^{\prime}+A_{k}^{\prime} \notin 2 E(\mathbb{Q})$.
(3) The case $P_{k}^{\prime}+B_{k}^{\prime}$.

Assume that $P_{K}^{\prime}+B_{k}^{\prime} \in 2 E(\mathbb{Q})$. Then we have

$$
\left\{\begin{array}{l}
5 F_{2 k+2}\left(-F_{2 k}+5 F_{2 k+2}\right) \\
3 F_{2 k}^{2}-13 F_{2 k} F_{2 k+2}-10 F_{2 k+2}^{2} \\
-15 F_{2 k} F_{2 k+2}-10 F_{2 k+2}
\end{array}\right.
$$

are all squares.
(a) For $k \equiv 0(\bmod 3), 3 F_{2 k}^{2}-13 F_{2 k} F_{2 k+2}-10 F_{2 k+2}^{2}$ is congruent 2 modulo 4. Hence, this number cannot be a square.
(b) For $k \equiv 1,2(\bmod 3), 5 F_{2 k+2}\left(-F_{2 k}+5 F_{2 k+2}\right)$ is congruent to 2 modulo 4. Hence, this number also cannot be a square.

Hence, we have $P_{K}^{\prime}+B_{k}^{\prime} \notin 2 E(\mathbb{Q})$.
(4) The case $P_{k}^{\prime}+C_{k}^{\prime}$.

Suppose that $P_{k}^{\prime}+C_{k}^{\prime} \in 2 E(\mathbb{Q})$. Then we have

$$
\left\{\begin{array}{l}
\left(3 F_{2 k}+7 F_{2 k+2}\right)\left(2 F_{2 k}+7 F_{2 k+2}\right), \\
\left(3 F_{2 k}+7 F_{2 k+2}\right)\left(3 F_{2 k}+2 F_{2 k+2}\right), \\
6 F_{2 k}^{2}+25 F_{2 k} F_{2 k+2}+14 F_{2 k+2}^{2}
\end{array}\right.
$$

are all squares. Let us find a contradiction for each cases of k. For $k \equiv 0,2$ $(\bmod 3)$ and $k \equiv 1(\bmod 3)$, the number

$$
6 F_{2 k}^{2}+25 F_{2 k} F_{2 k+2}+14 F_{2 k+2}^{2}
$$

is congruent to 2 and 3 modulo 4 , respectively. Hence, this number cannot be a square. This means $P_{k}^{\prime}+C_{k}^{\prime} \notin 2 E(\mathbb{Q})$. Therefore, we proved the lemma.

Let $E_{k}^{\prime}(\mathbb{Q}) / E_{k}^{\prime}(\mathbb{Q})_{\text {tors }}=\langle U\rangle$ and $X \in E_{k}^{\prime}(\mathbb{Q})$. Then we can represent X in the form $X=m U+T$, where m is an integer and T is a torsion point, that is $T \in\left\{O, A_{k}^{\prime}, B_{k}^{\prime}, C_{k}^{\prime}\right\}$. Similarly, $P_{k}^{\prime}=m_{P} U+T_{P}$ for an integer m_{P} and a torsion point $T_{P} \in\left\{O, A_{k}^{\prime}, B_{k}^{\prime}, C_{k}^{\prime}\right\}$. By Lemma 4.1, m_{P} is an odd. Therefore, we have $X \equiv X_{1}\left(\bmod 2 E_{k}^{\prime}(\mathbb{Q})\right)$, where

$$
X_{1} \in \mathcal{S}=\left\{O, A_{k}^{\prime}, B_{k}^{\prime}, C_{k}^{\prime}, P_{k}^{\prime}, P_{k}^{\prime}+A_{k}^{\prime}, P_{k}^{\prime}+B_{k}^{\prime}, P_{k}^{\prime}+C_{k}^{\prime}\right\} .
$$

Let $\{a, b, c\}=\left\{F_{2 k}, 5 F_{2 k+2}, 3 F_{2 k}+7 F_{2 k+2}\right\}$. By [15, 4.6, p. 89], the function $\varphi: E_{k}^{\prime}(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ defined by

$$
\varphi(X)= \begin{cases}(x+b c) \mathbb{Q}^{* 2} & \text { if } \quad X=(x, y) \neq O,(-b c, 0) \\ (a c-b c)(a b-b c) \mathbb{Q}^{* 2} & \text { if } \quad X=(-b c, 0) \\ \mathbb{Q}^{* 2} & \text { if } \quad X=O\end{cases}
$$

is a group homomorphism. All integer points have the form $X=X_{1}+2 X_{2}$, where $X_{1} \in \mathcal{S}$. Since φ is a homomorphism, we have

$$
\varphi(X)=\varphi\left(X_{1}\right) .
$$

It means that

$$
\begin{aligned}
(a b c u+a b)\left(a b c u_{1}+a b\right) & =\square, \\
(a b c u+a c)\left(a b c u_{1}+a c\right) & =\square, \\
(a b c u+b c)\left(a b u_{1}+b c\right) & =\square,
\end{aligned}
$$

where $X=(a b c u, a b c v), X_{1}=\left(a b c u_{1}, a b c v_{1}\right)$. Hence, if

$$
a u_{1}+1=\alpha \square, b u_{1}+1=\beta \square, c u_{1}+1=\gamma \square,
$$

then

$$
a u+1=\alpha \square, b u+1=\beta \square, c u+1=\gamma \square .
$$

Thus, it suffice to solve the systems induced by points X_{1}, since all other points X induce the same systems. More precisely, we should solve in integers all systems of the form
(4.1) $\quad F_{2 k} x+1=\alpha \square, \quad 5 F_{2 k+2} x+1=\beta \square, \quad\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1=\gamma \square$,
where for $X_{1}=\left(5 F_{2 k} F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right) u, 5 F_{2 k} F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right) v\right) \in \mathcal{S}$, the numbers α, β, γ are defined by

$$
\alpha=F_{2 k} u+1, \quad \beta=5 F_{2 k+2} u+1, \quad \gamma=\left(3 F_{2 k}+7 F_{2 k+2}\right) u+1
$$

if all of these three expressions are nonzero, and satisfy the following condition.

$$
\left\{\begin{array}{lll}
\alpha=\beta \gamma & \text { if } & F_{2 k} u+1=0 \\
\beta=\alpha \gamma & \text { if } & 5 F_{2 k+2} u+1=0 \\
\gamma=\alpha \beta & \text { if } & \left(3 F_{2 k}+7 F_{2 k+2}\right) u+1=0
\end{array}\right.
$$

Using these facts, we get the following theorem.
Theorem 4.2. Let k be a positive even integer and $k \not \equiv 4(\bmod 6)$. If Diophantine pair $\left\{F_{2 k}, 5 F_{2 k+2}\right\}$ is regular and the rank of elliptic curve

$$
E_{k}: y^{2}=\left(F_{2 k} x+1\right)\left(5 F_{2 k+2} x+1\right)\left(\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1\right)
$$

is 1 , then the x-coordinates of all integer points on E_{k} are given by

$$
x \in\left\{-1,0, d_{+}\right\}
$$

where $d_{+}=4\left(F_{2 k}\left(F_{2 k}^{2}+1\right)+3 F_{2 k+2}\left(F_{2 k+2}^{2}+1\right)+F_{2 k} F_{2 k+2}\left(15 F_{2 k}+27 F_{2 k+2}\right)\right)$.
Proof. First, let us consider that for $X_{1}=P_{k}^{\prime}$. Then we obtain the system

$$
F_{2 k} x+1=\square, \quad 5 F_{2 k+2} x+1=\square, \quad\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1=\square .
$$

This system is solved by regularity of Diophantine pair $\left\{F_{2 k}, 5 F_{2 k+2}\right\}$. Hence, we have to prove that the system (4.1) has no integer solution for $X_{1} \in \mathcal{S} \backslash\left\{P_{k}^{\prime}\right\}$. For $X_{1}=\left\{A_{k}^{\prime}, B_{k}^{\prime}, P_{k}^{\prime}+A_{k}^{\prime}, P_{k}^{\prime}+B_{k}^{\prime}\right\}$ exactly two of the numbers α, β, γ are negative and accordingly the system (4.1) has no integer solution. Therefore, we have to check three cases, that is $X_{1}=\left\{O, C_{k}^{\prime}, P_{k}^{\prime}+C_{k}^{\prime}\right\}$. Here, $N^{\prime \prime}$ denotes the square-free part of N and $N^{\prime \prime \prime}=\min \left\{\left|N^{\prime \prime}\right|,|2 N|^{\prime \prime}\right\}$.

- The case $X_{1}=O$.

For $X_{1}=O$, the system (4.1) becomes

$$
\left\{\begin{array}{l}
F_{2 k} x+1=5 F_{2 k+2}\left(3 F_{2 k}+7 F_{2 k+2}\right) \square \\
5 F_{2 k+2} x+1=F_{2 k}\left(3 F_{2 k}+7 F_{2 k+2}\right) \square \\
\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1=5 F_{2 k} F_{2 k+2} \square
\end{array}\right.
$$

From the second and third equations, we see that $F_{2 k}^{\prime \prime}$ divides $7\left(5 F_{2 k+2} x+\right.$ $1)-5\left(\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1\right)$. It means that $F_{2 k}^{\prime \prime}$ divides 2 , so, $F_{2 k}$ is a square or twice a square. In [2], J. H. E. Cohn proved that the Fibonacci number F_{n} can be a square or twice of a square when only $n=0,1,2,12$ or $n=0,3,6$, respectively. In our situation, the only possible cases are $F_{2 k}=1,8$ and 144.
(1) The case $F_{2 k}=1$.

We obtain the system

$$
\left\{\begin{array}{l}
x+1=5 \cdot 3 \cdot 24 \square \\
15 x+1=24 \square \\
24 x+1=15 \square .
\end{array}\right.
$$

The left side of third equation is congruent to 1 modulo 8 , but the right side is congruent to 0,4 and 7 modulo 8 . Therefore, we get a contradiction.
(2) The case $F_{2 k}=8$.

We obtain the system

$$
\left\{\begin{array}{l}
8 x+1=105 \cdot 171 \square, \\
105 x+1=8 \cdot 171 \square, \\
171 x+1=8 \cdot 105 \square .
\end{array}\right.
$$

The left side of first equation is congruent to 1 modulo 8 , but the right side is congruent to 0,3 and 4 modulo 8 . Therefore, we get a contradiction.
(3) The case $F_{2 k}=144$.

We obtain the system

$$
\left\{\begin{array}{l}
144 x+1=1885 \cdot 3071 \square \\
1885 x+1=144 \cdot 3071 \square \\
3071 x+1=144 \cdot 1885 \square
\end{array}\right.
$$

The left side of first equation is congruent to 1 modulo 8 , but the right side is congruent to 0,3 and 4 modulo 8 . Therefore, we get a contradiction.

- The case $X_{1}=C_{k}^{\prime}$.

Let $a=F_{2 k}, b=5 F_{2 k+2}, c=3 F_{2 k}+7 F_{2 k+2}$. Then the system (4.1) for $X_{1}=C_{k}^{\prime}$ becomes

$$
\left\{\begin{array}{l}
a x+1=c(c-a) \square \\
b x+1=c(c-b) \square \\
c x+1=(c-a)(c-b) \square .
\end{array}\right.
$$

Assume that a prime p divides $c^{\prime \prime}$ and $(c-a)^{\prime \prime}$. Then we have $p \mid(c-b)^{\prime \prime}$ from the third equation. Therefore, we have p divides a, b and c. From the equation $c=a+b+2 r$ with $r=\sqrt{a b+1}$, we obtain $p \mid 2 r$. Now from $2 a b+2=2 r^{2}$ it follows that $p=2$. Hence, we proved that

$$
\operatorname{gcd}\left(c^{\prime \prime},(c-a)^{\prime \prime}\right)=1 \text { or } 2
$$

and in the similar manner, we can prove that

$$
\operatorname{gcd}\left(c^{\prime \prime},(c-b)^{\prime \prime}\right)=1 \text { or } 2 \quad \text { and } \quad \operatorname{gcd}\left((c-a)^{\prime \prime},(c-b)^{\prime \prime}\right)=1 \text { or } 2 .
$$

Since $c^{\prime \prime \prime}$ divides $b-a=c-2 s$, where $s=\sqrt{a c+1}$ and $2 a c+2=2 s^{2}$, we have $c^{\prime \prime \prime} \mid 2$. This implies $c=3 F_{2 k}+7 F_{2 k+2}$ is a square or twice a square. First, let us consider the case $k \equiv 0(\bmod 3)$. Then

$$
c=3 F_{2 k}+7 F_{2 k+2} \equiv 3 \quad(\bmod 4) .
$$

This means $c=3 F_{2 k}+7 F_{2 k+2}$ cannot be a square or twice a square. Therefore, we may assume that k is not divisible by 3 . Let L_{n} be the n-th Lucas number,
defined by $L_{0}=2, L_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}$. We may use the following congruence equation

$$
F_{n+2 k} \equiv-F_{n} \quad\left(\bmod L_{k}\right) \quad \text { if } \quad 2 \mid k, 3 \nmid k .
$$

From the above congruence equation, we have

$$
\begin{aligned}
& F_{2 k} \equiv-F_{0}=0 \quad\left(\bmod L_{k}\right) \\
& F_{2 k+2} \equiv-F_{2}=-1 \quad\left(\bmod L_{k}\right)
\end{aligned}
$$

Therefore, $c=3 F_{2 k}+7 F_{2 k+2} \equiv-7\left(\bmod L_{k}\right)$, but -7 is non-residue of L_{k} by [14]. Hence, $c=3 F_{2 k}+7 F_{2 k+2}$ cannot be a square.

Lastly, c can be an even number only if $k \equiv 1(\bmod 3)$, which contradicts $k \not \equiv 4(\bmod 6)$. Therefore, c also cannot be twice a square.

- The case $X_{1}=P_{k}^{\prime}+C_{k}^{\prime}$.

For $X_{1}=P_{k}^{\prime}+C_{k}^{\prime}$ the system (4.1) becomes

$$
\left\{\begin{array}{l}
F_{2 k} x+1=5 F_{2 k+2}\left(2 F_{2 k}+7 F_{2 k+2}\right) \square \\
5 F_{2 k+2} x+1=F_{2 k}\left(3 F_{2 k}+2 F_{2 k+2}\right) \square \\
\left(3 F_{2 k}+7 F_{2 k+2}\right) x+1=5 F_{2 k} F_{2 k+2}\left(2 F_{2 k}+7 F_{2 k+2}\right)\left(3 F_{2 k}+2 F_{2 k+2}\right) \square
\end{array}\right.
$$

By the second and third equations, $F_{2 k}^{\prime \prime}$ divides $7\left(5 F_{2 k+2} x+1\right)-5\left(\left(3 F_{2 k}+\right.\right.$ $\left.7 F_{2 k+2}\right) x+1$). Therefore, $F_{2 k}^{\prime \prime}$ is 1 or 2 . Similarly as the case $X_{1}=O$, we obtain a contradiction.

Remark 4.3. As coefficients of E_{k} grow exponentially, computation of the rank of E_{k} for large k is difficult. The following values of $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ are computed using the programs SIMATH([19]) and mwrank $([3])$.

TABLE 1. Results from $\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$ for small k

Case of k	$E_{k}(\mathbb{Q})$	$\operatorname{rank}\left(E_{k}(\mathbb{Q})\right)$
$k=1$	$y^{2}=360 x^{3}+399 x^{2}+40 x+1$	1
$k=2$	$y^{2}=7800 x^{3}+2915 x^{2}+108 x+1$	2
$k=3$	$y^{2}=143640 x^{3}+20163 x^{2}+284 x+1$	1
$k=4$	$y^{2}=2587200 x^{3}+138383 x^{2}+744 x+1$	1
$k=5$	$y^{2}=46450800 x^{3}+948675 x^{2}+1948 x+1$	3

References

[1] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. https://doi.org/10.1093/qmath/20.1.129
[2] J. H. E. Cohn, Square Fibonacci Numbers, etc, Fibonacci Quart. 2 (1964), 109-113.
[3] J. E. Cremona, Algorithms for Modular Elliptic Curves, second edition, Cambridge University Press, Cambridge, 1997.
[4] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1999-2005. https://doi.org/10.1090/S0002-9939-99-04875-3
[5] _ , A parametric family of elliptic curves, Acta Arith. 94 (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
[6] \qquad , Diophantine m-tuples and elliptic curves, J. Théor. Nombres Bordeaux 13 (2001), no. 1, 111-124.
[7] , Diophantine quadruples and Fibonacci numbers, Bull. Kerala Math. Assoc. 1 (2004), no. 2, 133-147.
[8] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. https://doi.org/10. 1093/qjmath/49.195.291
[9] , Integer points on a family of elliptic curves, Publ. Math. Debrecen 56 (2000), no. 3-4, 321-335.
[10] Y. Fujita, The Hoggatt-Bergum conjecture on $D(-1)$-triples $\left\{F_{2 k+1}, F_{2 k+3}, F_{2 k+5}\right\}$ and integer points on the attached elliptic curves, Rocky Mountain J. Math. 39 (2009), no. 6, 1907-1932. https://doi.org/10.1216/RMJ-2009-39-6-1907
[11] B. He, A. Togbé, and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), no. 9, 6665-6709. https://doi.org/10.1090/tran/7573
[12] V. E. Hoggatt, Jr., and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. 15 (1977), no. 4, 323-330.
[13] D. Husemoller, Elliptic Curves, Graduate Texts in Mathematics, 111, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4757-5119-2
[14] A. Kim, Square Fibonacci numbers and square Lucas numbers, Asian Res. J. Math. 3 (2017), no. 3, 1-8.
[15] A. W. Knapp, Elliptic curves, Mathematical Notes, 40, Princeton University Press, Princeton, NJ, 1992.
[16] J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugal. Math. 42 (1983/84), no. 4, 441-445.
[17] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123. https://doi. org/10.4064/aa-78-2-101-123
[18] J. Park, Integer points on the elliptic curves induced by Diophantine triples, Commun. Korean Math. Soc. 35 (2020), no. 3, 745-757. https://doi.org/10.4134/CKMS.c190364
[19] SIMATH manual, Saarbrücken, 1997
Jinseo Park
Department of Mathematics Education
Catholic Kwandong University
Gangneung 25601, Korea
Email address: jspark@cku.ac.kr

[^0]: Received July 16, 2020; Revised October 22, 2020; Accepted January 12, 2021.
 2010 Mathematics Subject Classification. Primary 11B39, 11G05, 11D09; Secondary 11D45.

 Key words and phrases. Diophantine m-tuple, Fibonacci numbers, elliptic curve.
 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).

