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DIOPHANTINE TRIPLE WITH FIBONACCI NUMBERS

AND ELLIPTIC CURVE

Jinseo Park

Abstract. A Diophantine m-tuple is a set {a1, a2, . . . , am} of positive
integers such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m. Let Ek

be the elliptic curve induced by Diophantine triple {F2k, 5F2k+2, 3F2k +

7F2k+2}. In this paper, we find the structure of a torsion group of Ek,
and find all integer points on Ek under assumption that rank(Ek(Q)) = 1

and some further conditions.

1. Introduction

A Diophantine m-tuple is a set which consists of m distinct positive integers
satisfying the property that the product of any two of them is one less than a
perfect square. If the set which consists of rational numbers satisfy the same
property, then we call it a rational Diophantine m-tuple. Fermat first found
the Diophantine triple {1, 3, 8, 120}. Many famous mathematicians made lots
of results related to the problems of a Diophantine m-tuple, but still there
are many open problems. An old conjecture was that there does not exist a
Diophantine quintuple. Recently, the conjecture has been proved by B. He, A.
Togbé and V. Ziegler [11]. For any Diophantine triple {a, b, c} with a < b < c,
the set {a, b, c, d±} is a Diophantine quadruple, where

d± = a+ b+ c+ 2abc± 2rst

and r, s, t are the positive integers satisfying

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

The strong version of the conjecture states that if {a, b, c, d} is a Diophantine
quadruple and d > max{a, b, c}, then d = d+. These Diophantine quadruples
are called regular.
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In 1969, A. Baker and H. Davenport [1] proved that the Diophantine triple
{1, 3, 8} is regular, which implies that it cannot be extended to a quintuple and
not the other way round. In 1998, A. Dujella and A. Pethö [8] proved that if
the set {1, 3, ck} is the Diophantine triple, where

ck =
1

6
[(2 +

√
3)(7 + 4

√
3)k + (2−

√
3)(7− 4

√
3)k − 4],

then there are only two numbers ck−1 and ck+1 which make the set {1, 3, ck}
to the Diophantine quadruple.

Let Fn be the n-th Fibonacci number, defined by F0 = 0, F1 = 1 and
Fn+2 = Fn+1 +Fn. In 1977, V. E. Hoggatt and G. E. Bergum [12] conjectured
that if {F2k, F2k+2, F2k+4, d} is a Diophantine quadruple, then d is a unique.
The conjecture was proved by Dujella [4] in 1999. There are many papers
which contain generalizations of the result of Hoggatt and Bergum [7, 10, 16].
The reason why the extendibility is important is related to the elliptic curves.
We should solve the equations

ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the Diophantine triple {a, b, c} to a Diophantine quadruple. This
leads naturally to the following elliptic curve

y2 = (ax+ 1)(bx+ 1)(cx+ 1).

Then we have always integer points

(0,±1), (d+,±(at+ rs)(bs+ rt)(cr+ st)), (d−,±((at− rs)(bs− rt)(cr− st))),

and also (−1, 0) if 1 ∈ {a, b, c}. Dujella [5] proved that the elliptic curve

E : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

has four integer points

(0,±1), (16k3 − 4k,±(128k6 − 112k4 − 20k2 − 1))

under assumption that rank(E(Q)) = 1. In [18], the author found all integer
points on the elliptic curve

y2 = (F2kx+ 1)(F2k+2x+ 1)(4F2k+1F2k+2F2k+3x+ 1)

under assumption that the rank of the elliptic curve is 2. There are various
papers which contain similar results [6, 9, 10].

In this paper, we find the structure of the torsion subgroup of

Ek : y2 = (F2kx+ 1)(5F2k+2x+ 1)((3F2k + 7F2k+2)x+ 1)

and find all integer points on the Ek under assumption that rank(Ek(Q)) = 1
and k is a positive even integer with k 6≡ 4 (mod 6). It is obvious that every
solution of system

(1.1) F2kx+ 1 = �, 5F2k+2x+ 1 = �, (3F2k + 7F2k+2)x+ 1 = �
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induce an integer point on the elliptic curve Ek. The aim of this paper is to
prove that the converse of this statement, that is the x-coordinates of all integer
points on Ek satisfy the system (1.1) under the same conditions.

2. Preliminaries

2.1. Points on the elliptic curve

Let {a, b, c} be a Diophantine triple. We should solve the system

(2.1) ax+ 1 = �, bx+ 1 = �, cx+ 1 = �

to extend the Diophantine triple to a Diophantine quadruple. According to
this system, we have the following elliptic curve

E : y2 = (ax+ 1)(bx+ 1)(cx+ 1).

There are two obvious rational points

P = (0, 1), R =

(
1

abc
,
rst

abc

)
,

where r =
√
ab+ 1, s =

√
ac+ 1 and t =

√
bc+ 1. Then we wonder which

points on E satisfy the system (2.1). We get the answer by the following
Propositions.

Proposition 2.1 ([6, Proposition 1]). The x-coordinate of the point T ∈ E(Q)
satisfies (2.1) if and only if T − P ∈ 2E(Q).

The following Proposition is called 2-descent proposition which can confirm
T ∈ 2E(Q).

Proposition 2.2 ([13, 4.1, p. 37], [15, 4.2, p. 85]). Let P = (x′, y′) be a Q-
rational point on E, an elliptic curve over Q given by

y2 = (x− α)(x− β)(x− γ),

where α, β, γ ∈ Q. Then there exists a Q-rational point Q = (x, y) on E such
that 2Q = P if and only if x′ − α, x′ − β, x′ − γ are all Q-rational squares.

2.2. Structure of torsion group

Let EQ(M,N) be the elliptic curve defined by

y2 = x3 + (M +N)x2 +MNx.

Then we can find that the torsion group is classified according to the following
Theorem.

Theorem 2.3 ([17, Main Theorem 1]). The torsion subgroups of EQ(M,N)
are uniquely determined by:

• The torsion subgroup of EQ(M,N) contains Z2 × Z4 if M and N are
both squares, or −M and N−M are both squares, or if −N and M−N
are both squares.
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• The torsion subgroup of EQ(M,N) is Z2×Z8 if there exists a non-zero
integer d such that M = d2u4 and N = d2v4, or M = −d2v4 and
N = d2(u4 − v4), or M = d2(u4 − v4) and N = −d2v4 where (u, v, w)
forms a Pythagorean triple (i.e., u2 + v2 = w2).

• The torsion subgroup of EQ(M,N) is Z2 × Z6 if there exist integers a
and b such that

a

b
/∈ {−2,−1,−1

2
, 0, 1}

and M = a4 + 2a3b and N = 2ab3 + b4.
• In all other cases, the torsion subgroup of EQ(M,N) is Z2 × Z2.

The coordinate transformation

x→ x

abc
, y → y

abc

applied on the curve E leads to the elliptic curve

E′ : y2 = (x+ bc)(x+ ac)(x+ ab).

The following Theorem is more specific to find the structure of a torsion group.

Theorem 2.4 ([6, Theorem 2]). E′(Q)tors ∼= Z/2Z× Z/2Z or Z/2Z× Z/6Z.

3. Torsion group on elliptic curve

Let Ek be the elliptic curve induced by Diophantine triple

{F2k, 5F2k+2, 3F2k + 7F2k+2},
that is

Ek : y2 = (F2kx+ 1)(5F2k+2x+ 1)(3F2k + 7F2k+2x+ 1).

Then we have the elliptic curve

E′k : y2 = (x+5F2k+2(3F2k +7F2k+2))(x+F2k(3F2k +7F2k+2))(x+5F2kF2k+2)

by coordinate transformation

x→ x

5F2kF2k+2(3F2k + 7F2k+2)
, y → y

5F2kF2k+2(3F2k + 7F2k+2)
.

Using Theorem 2.3 and Theorem 2.4, we can find the structure of torsion group
of E′k.

Lemma 3.1. The torsion group of E′k is isomorphic to Z2 × Z2, that is

E′k(Q)tors ∼= Z2 × Z2.

Proof. It is sufficient to show that there do not exist α and β such that

α

β
/∈ {−2,−1,−1

2
, 0, 1},

M = F2k(3F2k + 2F2k+2) = α4 + 2α3β
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and

N = 5F2k+2(2F2k + 7F2k+2) = 2αβ3 + β4.

Then we have

(3.1) M +N = (α2 + αβ + β2)2 − 3α2β2.

Since

F2k ≡



0 (mod 8) if k ≡ 0 (mod 6),
1 (mod 8) if k ≡ 1 (mod 6),
3 (mod 8) if k ≡ 2 (mod 6),
0 (mod 8) if k ≡ 3 (mod 6),
5 (mod 8) if k ≡ 4 (mod 6),
7 (mod 8) if k ≡ 5 (mod 6),

the left side of (3.1) is congruent to 2 or 3 modulo 8. However, the right side
is congruent to 0, 1, 5 or 6 modulo 8. Therefore,

E′k(Q)tors ∼= Z2 × Z2. �

There are integer points on E′k such that

A′k = (−5F2k+2(3F2k + 7F2k+2), 0), B′k = (−F2k(3F2k + 7F2k+2), 0),

and

C ′k = (−5F2kF2k+2, 0)

of order 2, and the obvious integer point

P ′k = (0, 5F2kF2k+2(3F2k + 7F2k+2)).

Hence, we have the following results.

Corollary 3.2. E′k(Q)tors = {O,A′k, B′k, C ′k} and rank(E′k(Q)) ≥ 1.

Proof. The point P ′k is not finite order. Hence, rank(E′k(Q)) ≥ 1 by Lemma
3.1. �

4. Integer points on Ek

Using Proposition 2.2, we find all integer points on E′k under the assumption
that rank(E′k(Q)) = 1 and some further conditions.

Lemma 4.1. P ′k, P
′
k +A′k, P

′
k +B′k, P

′
k + C ′k /∈ 2E′k(Q).

Proof. We have

x(P ′k) = 0,

x(P ′k +A′k) = −F2k(2F2k + 12F2k+2),

x(P ′k +B′k) = −5F2k+2(4F2k + 2F2k+2),

x(P ′k + C ′k) = 2(F2k + F2k+2)(3F2k + 7F2k+2).
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(1) The case P ′k.
If P ′k ∈ 2E(Q), then the numbers 5F2kF2k+2,

F2k(3F2k + 7F2k+2),
5F2k+2(3F2k + 7F2k+2)

are all squares.

(a) For k ≡ 0 (mod 3), 5F2k+2(3F2k + 7F2k+2) is congruent to 3 modulo
4. So, this number cannot be a square.

(b) For k ≡ 1 (mod 3), 5F2kF2k+2 is congruent to 3 modulo 4, which means
this number cannot be a square.

(c) For k ≡ 2 (mod 3), F2k(3F2k + 7F2k+2) is congruent to 3 modulo 4.
Therefore, this number cannot be a square.

Hence, we have P ′k /∈ 2E(Q).
(2) The case P ′k +A′k.

Suppose that P ′k +A′k ∈ 2E(Q). Then the numbers −2F 2
2k + 3F2kF2k+2 + 35F 2

2k+2,
F 2
2k − 5F2kF2k+2,
−2F 2

2k − 7F2kF2k+2

are all squares, but there is a contradiction by following results.

(a) For k ≡ 0 (mod 3), −2F 2
2k + 3F2kF2k+2 + 35F 2

2k+2 is congruent to 3
modulo 4. This means this number cannot be a square.

(b) For k ≡ 1 (mod 3), F 2
2k − 5F2kF2k+2 is congruent to 2 modulo 4. This

means this number cannot be a square.
(c) For k ≡ 2 (mod 3), −2F 2

2k − 7F2kF2k+2 is congruent to 2 modulo 4.
This means this number cannot be a square.

Hence, we have P ′k +A′k /∈ 2E(Q).
(3) The case P ′k +B′k.

Assume that P ′K +B′k ∈ 2E(Q). Then we have 5F2k+2(−F2k + 5F2k+2),
3F 2

2k − 13F2kF2k+2 − 10F 2
2k+2,

−15F2kF2k+2 − 10F2k+2

are all squares.

(a) For k ≡ 0 (mod 3), 3F 2
2k−13F2kF2k+2−10F 2

2k+2 is congruent 2 modulo
4. Hence, this number cannot be a square.

(b) For k ≡ 1, 2 (mod 3), 5F2k+2(−F2k+5F2k+2) is congruent to 2 modulo
4. Hence, this number also cannot be a square.

Hence, we have P ′K +B′k /∈ 2E(Q).
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(4) The case P ′k + C ′k.
Suppose that P ′k + C ′k ∈ 2E(Q). Then we have (3F2k + 7F2k+2)(2F2k + 7F2k+2),

(3F2k + 7F2k+2)(3F2k + 2F2k+2),
6F 2

2k + 25F2kF2k+2 + 14F 2
2k+2

are all squares. Let us find a contradiction for each cases of k. For k ≡ 0, 2
(mod 3) and k ≡ 1 (mod 3), the number

6F 2
2k + 25F2kF2k+2 + 14F 2

2k+2

is congruent to 2 and 3 modulo 4, respectively. Hence, this number cannot be
a square. This means P ′k +C ′k /∈ 2E(Q). Therefore, we proved the lemma. �

Let E′k(Q)/E′k(Q)tors = 〈U〉 and X ∈ E′k(Q). Then we can represent X in
the form X = mU + T , where m is an integer and T is a torsion point, that
is T ∈ {O,A′k, B′k, C ′k}. Similarly, P ′k = mPU + TP for an integer mP and a
torsion point TP ∈ {O,A′k, B′k, C ′k}. By Lemma 4.1, mP is an odd. Therefore,
we have X ≡ X1 (mod 2E′k(Q)), where

X1 ∈ S = {O,A′k, B′k, C ′k, P ′k, P ′k +A′k, P
′
k +B′k, P

′
k + C ′k}.

Let {a, b, c} = {F2k, 5F2k+2, 3F2k +7F2k+2}. By [15, 4.6, p. 89], the function
ϕ : E′k(Q)→ Q∗/Q∗2 defined by

ϕ(X) =

 (x+ bc)Q∗2 if X = (x, y) 6= O, (−bc, 0),
(ac− bc)(ab− bc)Q∗2 if X = (−bc, 0),
Q∗2 if X = O

is a group homomorphism. All integer points have the form X = X1 + 2X2,
where X1 ∈ S. Since ϕ is a homomorphism, we have

ϕ(X) = ϕ(X1).

It means that

(abcu+ ab)(abcu1 + ab) = �,

(abcu+ ac)(abcu1 + ac) = �,

(abcu+ bc)(abu1 + bc) = �,

where X = (abcu, abcv), X1 = (abcu1, abcv1). Hence, if

au1 + 1 = α�, bu1 + 1 = β�, cu1 + 1 = γ�,

then

au+ 1 = α�, bu+ 1 = β�, cu+ 1 = γ�.

Thus, it suffice to solve the systems induced by points X1, since all other
points X induce the same systems. More precisely, we should solve in integers
all systems of the form

(4.1) F2kx+ 1 = α�, 5F2k+2x+ 1 = β�, (3F2k + 7F2k+2)x+ 1 = γ�,
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where for X1 = (5F2kF2k+2(3F2k+7F2k+2)u, 5F2kF2k+2(3F2k+7F2k+2)v) ∈ S,
the numbers α, β, γ are defined by

α = F2ku+ 1, β = 5F2k+2u+ 1, γ = (3F2k + 7F2k+2)u+ 1

if all of these three expressions are nonzero, and satisfy the following condition. α = βγ if F2ku+ 1 = 0,
β = αγ if 5F2k+2u+ 1 = 0,
γ = αβ if (3F2k + 7F2k+2)u+ 1 = 0.

Using these facts, we get the following theorem.

Theorem 4.2. Let k be a positive even integer and k 6≡ 4 (mod 6). If Dio-
phantine pair {F2k, 5F2k+2} is regular and the rank of elliptic curve

Ek : y2 = (F2kx+ 1)(5F2k+2x+ 1)((3F2k + 7F2k+2)x+ 1)

is 1, then the x-coordinates of all integer points on Ek are given by

x ∈ {−1, 0, d+},

where d+ = 4(F2k(F 2
2k +1)+3F2k+2(F 2

2k+2 +1)+F2kF2k+2(15F2k +27F2k+2)).

Proof. First, let us consider that for X1 = P ′k. Then we obtain the system

F2kx+ 1 = �, 5F2k+2x+ 1 = �, (3F2k + 7F2k+2)x+ 1 = �.

This system is solved by regularity of Diophantine pair {F2k, 5F2k+2}. Hence,
we have to prove that the system (4.1) has no integer solution for X1 ∈ S\{P ′k}.
For X1 = {A′k, B′k, P ′k + A′k, P

′
k + B′k} exactly two of the numbers α, β, γ are

negative and accordingly the system (4.1) has no integer solution. Therefore,
we have to check three cases, that is X1 = {O,C ′k, P ′k +C ′k}. Here, N ′′ denotes
the square-free part of N and N ′′′ = min{|N ′′|, |2N |′′}.
• The case X1 = O.

For X1 = O, the system (4.1) becomes F2kx+ 1 = 5F2k+2(3F2k + 7F2k+2)�,
5F2k+2x+ 1 = F2k(3F2k + 7F2k+2)�,
(3F2k + 7F2k+2)x+ 1 = 5F2kF2k+2�.

From the second and third equations, we see that F ′′2k divides 7(5F2k+2x+
1)− 5((3F2k + 7F2k+2)x+ 1). It means that F ′′2k divides 2, so, F2k is a square
or twice a square. In [2], J. H. E. Cohn proved that the Fibonacci number Fn

can be a square or twice of a square when only n = 0, 1, 2, 12 or n = 0, 3, 6,
respectively. In our situation, the only possible cases are F2k = 1, 8 and 144.

(1) The case F2k = 1.
We obtain the system x+ 1 = 5 · 3 · 24�,

15x+ 1 = 24�,
24x+ 1 = 15�.
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The left side of third equation is congruent to 1 modulo 8, but the
right side is congruent to 0, 4 and 7 modulo 8. Therefore, we get a
contradiction.

(2) The case F2k = 8.
We obtain the system 8x+ 1 = 105 · 171�,

105x+ 1 = 8 · 171�,
171x+ 1 = 8 · 105�.

The left side of first equation is congruent to 1 modulo 8, but the
right side is congruent to 0, 3 and 4 modulo 8. Therefore, we get a
contradiction.

(3) The case F2k = 144.
We obtain the system 144x+ 1 = 1885 · 3071�,

1885x+ 1 = 144 · 3071�,
3071x+ 1 = 144 · 1885�.

The left side of first equation is congruent to 1 modulo 8, but the
right side is congruent to 0, 3 and 4 modulo 8. Therefore, we get a
contradiction.

• The case X1 = C ′k.
Let a = F2k, b = 5F2k+2, c = 3F2k+7F2k+2. Then the system (4.1) for X1 = C ′k
becomes  ax+ 1 = c(c− a)�,

bx+ 1 = c(c− b)�,
cx+ 1 = (c− a)(c− b)�.

Assume that a prime p divides c′′ and (c− a)′′. Then we have p | (c− b)′′ from
the third equation. Therefore, we have p divides a, b and c. From the equation
c = a+ b+ 2r with r =

√
ab+ 1, we obtain p | 2r. Now from 2ab+ 2 = 2r2 it

follows that p = 2. Hence, we proved that

gcd(c′′, (c− a)′′) = 1 or 2

and in the similar manner, we can prove that

gcd(c′′, (c− b)′′) = 1 or 2 and gcd((c− a)′′, (c− b)′′) = 1 or 2.

Since c′′′ divides b− a = c− 2s, where s =
√
ac+ 1 and 2ac+ 2 = 2s2, we have

c′′′ | 2. This implies c = 3F2k + 7F2k+2 is a square or twice a square. First, let
us consider the case k ≡ 0 (mod 3). Then

c = 3F2k + 7F2k+2 ≡ 3 (mod 4).

This means c = 3F2k +7F2k+2 cannot be a square or twice a square. Therefore,
we may assume that k is not divisible by 3. Let Ln be the n-th Lucas number,
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defined by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln. We may use the following
congruence equation

Fn+2k ≡ −Fn (mod Lk) if 2 | k, 3 - k.

From the above congruence equation, we have

F2k ≡ −F0 = 0 (mod Lk),

F2k+2 ≡ −F2 = −1 (mod Lk).

Therefore, c = 3F2k + 7F2k+2 ≡ −7 (mod Lk), but −7 is non-residue of Lk by
[14]. Hence, c = 3F2k + 7F2k+2 cannot be a square.

Lastly, c can be an even number only if k ≡ 1 (mod 3), which contradicts
k 6≡ 4 (mod 6). Therefore, c also cannot be twice a square.
• The case X1 = P ′k + C ′k.

For X1 = P ′k + C ′k the system (4.1) becomes F2kx+ 1 = 5F2k+2(2F2k + 7F2k+2)�,
5F2k+2x+ 1 = F2k(3F2k + 2F2k+2)�,
(3F2k + 7F2k+2)x+ 1 = 5F2kF2k+2(2F2k + 7F2k+2)(3F2k + 2F2k+2)�.

By the second and third equations, F ′′2k divides 7(5F2k+2x+ 1)− 5((3F2k +
7F2k+2)x + 1). Therefore, F ′′2k is 1 or 2. Similarly as the case X1 = O, we
obtain a contradiction. �

Remark 4.3. As coefficients of Ek grow exponentially, computation of the rank
of Ek for large k is difficult. The following values of rank(Ek(Q)) are computed
using the programs SIMATH([19]) and mwrank([3]).

Table 1. Results from rank (Ek(Q)) for small k

Case of k Ek(Q) rank(Ek(Q))

k = 1 y2 = 360x3 + 399x2 + 40x+ 1 1

k = 2 y2 = 7800x3 + 2915x2 + 108x+ 1 2

k = 3 y2 = 143640x3 + 20163x2 + 284x+ 1 1

k = 4 y2 = 2587200x3 + 138383x2 + 744x+ 1 1

k = 5 y2 = 46450800x3 + 948675x2 + 1948x+ 1 3
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[11] B. He, A. Togbé, and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math.
Soc. 371 (2019), no. 9, 6665–6709. https://doi.org/10.1090/tran/7573

[12] V. E. Hoggatt, Jr., and G. E. Bergum, A problem of Fermat and the Fibonacci sequence,
Fibonacci Quart. 15 (1977), no. 4, 323–330.

[13] D. Husemoller, Elliptic Curves, Graduate Texts in Mathematics, 111, Springer-Verlag,

New York, 1987. https://doi.org/10.1007/978-1-4757-5119-2
[14] A. Kim, Square Fibonacci numbers and square Lucas numbers, Asian Res. J. Math. 3

(2017), no. 3, 1–8.

[15] A. W. Knapp, Elliptic curves, Mathematical Notes, 40, Princeton University Press,
Princeton, NJ, 1992.

[16] J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers,

Portugal. Math. 42 (1983/84), no. 4, 441–445.
[17] K. Ono, Euler’s concordant forms, Acta Arith. 78 (1996), no. 2, 101–123. https://doi.

org/10.4064/aa-78-2-101-123

[18] J. Park, Integer points on the elliptic curves induced by Diophantine triples, Commun.
Korean Math. Soc. 35 (2020), no. 3, 745–757. https://doi.org/10.4134/CKMS.c190364

[19] SIMATH manual, Saarbrücken, 1997

Jinseo Park
Department of Mathematics Education

Catholic Kwandong University

Gangneung 25601, Korea
Email address: jspark@cku.ac.kr

https://doi.org/10.1090/S0002-9939-99-04875-3
https://doi.org/10.4064/aa-94-1-87-101
https://doi.org/10.1093/qjmath/49.195.291
https://doi.org/10.1093/qjmath/49.195.291
https://doi.org/10.1216/RMJ-2009-39-6-1907
https://doi.org/10.1090/tran/7573
https://doi.org/10.1007/978-1-4757-5119-2
https://doi.org/10.4064/aa-78-2-101-123
https://doi.org/10.4064/aa-78-2-101-123
https://doi.org/10.4134/CKMS.c190364

