DOI QR코드

DOI QR Code

DIOPHANTINE TRIPLE WITH FIBONACCI NUMBERS AND ELLIPTIC CURVE

  • Park, Jinseo (Department of Mathematics Education Catholic Kwandong University)
  • Received : 2020.07.16
  • Accepted : 2021.01.12
  • Published : 2021.07.31

Abstract

A Diophantine m-tuple is a set {a1, a2, …, am} of positive integers such that aiaj+1 is a perfect square for all 1 ≤ i < j ≤ m. Let Ek be the elliptic curve induced by Diophantine triple {F2k, 5F2k+2, 3F2k + 7F2k+2}. In this paper, we find the structure of a torsion group of Ek, and find all integer points on Ek under assumption that rank(Ek(ℚ)) = 1 and some further conditions.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1G1A1006396).

References

  1. A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. https://doi.org/10.1093/qmath/20.1.129
  2. J. H. E. Cohn, Square Fibonacci Numbers, etc, Fibonacci Quart. 2 (1964), 109-113.
  3. J. E. Cremona, Algorithms for Modular Elliptic Curves, second edition, Cambridge University Press, Cambridge, 1997.
  4. A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1999-2005. https://doi.org/10.1090/S0002-9939-99-04875-3
  5. A. Dujella, A parametric family of elliptic curves, Acta Arith. 94 (2000), no. 1, 87-101. https://doi.org/10.4064/aa-94-1-87-101
  6. A. Dujella, Diophantine m-tuples and elliptic curves, J. Th'eor. Nombres Bordeaux 13 (2001), no. 1, 111-124. https://doi.org/10.5802/jtnb.308
  7. A. Dujella, Diophantine quadruples and Fibonacci numbers, Bull. Kerala Math. Assoc. 1 (2004), no. 2, 133-147.
  8. A. Dujella and A. Petho, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291-306. https://doi.org/10.1093/qjmath/49.195.291
  9. A. Dujella and A. Petho, Integer points on a family of elliptic curves, Publ. Math. Debrecen 56 (2000), no. 3-4, 321-335.
  10. Y. Fujita, The Hoggatt-Bergum conjecture on D(-1)-triples {F2k+1, F2k+3, F2k+5} and integer points on the attached elliptic curves, Rocky Mountain J. Math. 39 (2009), no. 6, 1907-1932. https://doi.org/10.1216/RMJ-2009-39-6-1907
  11. B. He, A. Togbe, and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), no. 9, 6665-6709. https://doi.org/10.1090/tran/7573
  12. V. E. Hoggatt, Jr., and G. E. Bergum, A problem of Fermat and the Fibonacci sequence, Fibonacci Quart. 15 (1977), no. 4, 323-330.
  13. D. Husemoller, Elliptic Curves, Graduate Texts in Mathematics, 111, Springer-Verlag, New York, 1987. https://doi.org/10.1007/978-1-4757-5119-2
  14. A. Kim, Square Fibonacci numbers and square Lucas numbers, Asian Res. J. Math. 3 (2017), no. 3, 1-8. https://doi.org/10.9734/ARJOM/2017/32312
  15. A. W. Knapp, Elliptic curves, Mathematical Notes, 40, Princeton University Press, Princeton, NJ, 1992.
  16. J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugal. Math. 42 (1983/84), no. 4, 441-445.
  17. K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101-123. https://doi.org/10.4064/aa-78-2-101-123
  18. J. Park, Integer points on the elliptic curves induced by Diophantine triples, Commun. Korean Math. Soc. 35 (2020), no. 3, 745-757. https://doi.org/10.4134/CKMS.c190364
  19. SIMATH manual, Saarbrucken, 1997