The purpose of this study is to extract lineaments in the southeastern part of the Gaeum Fault System, and to understand their characteristics and a relationship between them and fault activation. The lineaments were extracted using a multi-layered analysis based on a digital elevation model (5 m resolution), aerial photos, and satellite images. First-grade lineaments inferred as an high-activity along them were classified based on the displacement of the Quaternary deposits and the distribution of fault-related landforms. The results of classifying the first-grade lineaments were verified by fieldwork and electrical resistivity survey. In the study area of 510 km2, a total of 222 lineaments was identified, and their total length was 333.4 km. Six grade lineaments were identified, and their total length was 11.2 km. The lineaments showed high-density distribution in the region along the Geumcheon, Gaeum, Ubo fault, and a boundary of the Hwasan cauldron consisting the Gaeum Fault System. They generally have WNW-ESE trend, which is the same direction with the strike of Gaeum Fault System. Electrical resistivity survey was conducted on eight survey lines crossing the first-grade lineament. A low-resistivity zone, which is assumed to be a fault damage zone, has been identified across almost all survey lines (except for only one survey line). The visual (naked eyes) detecting of the lineament was evaluated to be less objectivity than the automatic extraction using the algorithm. However, the results of electrical resistivity survey showed that first-grade lineament extracted by visual detecting was 83% reliable for inferred fault detection. These results showed that objective visual detection results can be derived from multi-layered analysis based on tectonic geomorphology.
본 논문에서는 얼굴 인식 알고리즘을 하드웨어로 설계하여 임베디드 시스템에 적용하기 위해 고정 소수점 모델을 구성하고 그에 근거한 하드웨어 구조를 제안하였다. 얼굴 인식 알고리즘은 학습된 데이터를 사용하여 입력 영상에서 얼굴을 검출하고 검출된 얼굴 영상에서 두 눈을 찾아 얼굴 검증 단계를 거치며, 얼굴 검증단계에서 얻어진 두 눈의 위치를 이용하여 얼굴 인식 단계에서 필요한 얼굴 특징 벡터를 연산하고 저장 또는 비교를 통하여 얼굴 인식을 수행한다. 부동 소수점 모델과 고정 소수점 모델의 유사성은 부동 소수점 모델에서 검출된 영상을 고정 소수점 모델에서 수행하여 비교하였으며 성능이 0.2% 오차 범위 안에서 일치하는 고정 소수점 모델을 구성하였다.
본 논문에서는 스테레오 영상의 정합값(matching)을 통한 얼굴 특징추출 알고리즘을 제안한다. 제안된 알고리즘에서는 얼굴색상 정보의 RGB컬러공간을 YCbCr컬러공간으로 변환하여 얼굴영역 검출하였다. 추출된 얼굴영역으로부터 눈 형판(template)을 적용하여 눈 사이의 거리와 기울어짐, 코와 입에 대한 특징의 기하학적인 특징 벡터를 추출하였다. 또한 제안한 방법은 2차원 특징정보 뿐만 아니라 스테레오 영상의 정합을 통한 얼굴의 눈, 코, 입의 특징을 추출할 수 있었다. 실험을 통하여 약 1m이내 거리에서 73%의 일치율을 보였고, 약 1m이후 거리에선 52%의 일치율을 보였다.
본 논문은 안드로이드 스마트 폰 환경에서 정중앙 블록과 주변 블록들 간의 블록 대비도를 이용해 눈썹을 검출한 후, 눈썹과 눈 간의 기하학적 특성을 이용해 눈의 위치를 찾는 눈 검출 방법에 관한 것이다. 제안된 방법은 Haar-like 특징과 AdaBoost 알고리즘 그리고 적응형 템플릿 정합을 이용해 입력 영상에서 얼굴 영역을 검출한 후, 이를 이용해 좌측 및 우측 눈썹과 눈 탐색 영역을 산정한다. 눈썹 영역의 Integral Image에서 눈썹에 해당하는 부분이 주변 블록들에 비해 상대적으로 어둡다는 특성을 이용해 눈썹을 추출한다. 이와 동시에 각 눈 탐색 영역의 Integral Image에서 동공 블록이 나머지 주변 블록들에 비해 상대적으로 어둡고 대칭성이 양호하다는 특성을 이용해 눈 후보 영역들을 추출한 후 최대 블록 대비도를 갖는 블록의 중심화소를 동공 후보점으로 삼는다. 이후 눈의 위치는 항상 눈썹 하단에 위치하며 그 떨어진 정도가 사람마다 크게 다르지 않다는 기하학적 특성을 이용해 눈 후보 영역에서 나온 동공 후보 점들을 검증한다. 제안된 방법은 거리 및 조명 변화 그리고 안경 착용에 강인한 것이 장점이다. 눈썹을 먼저 찾은 후 기하학적 특성을 이용해 좌우 동공 후보점 쌍의 적합성을 검증함으로써 안경과 눈을 효과적으로 구분할 수 있고 눈이 감겨 동공이 가려진 상태에도 감긴 눈의 위치를 검출할 수 있다.
세라믹 소재 영상은 사람의 육안으로 판단하기 힘든 내부 기공이나 균열, 이물질 등의 결함들이 존재한다. 본 논문에서는 사람의 육안으로 검출하기 힘든 세라믹 소재로 이루어진 파이프 용접부에 있는 결함을 확인하기 위해 ART2 알고리즘을 이용하여 세라믹 영상에서 결함을 검출하는 방법을 제안한다. 비파괴 검사는 본질에 손상이 전혀 가지 않는 검사 방법이기 때문에 소재의 결함 검출에 대해서는 적절한 방법이다. 따라서 본 논문에서는 Ends-In Search Stretching 기법을 적용하여 명암 대비를 강조하고, 명암 대비가 강조된 영상에서 삼각형 타입의 소속 함수를 이용한 퍼지 이진화 기법을 적용한 후, 임의의 패턴 입력에 대해서도 효과적으로 특징을 분류하는 개선된ART2 알고리즘을 적용하여 결함 영역을 검출한다. 제안된 방법을 세라믹 소재 영상을 대상으로 실험한 결과, 기존의 방법보다 효율적으로 결함이 검출되는 것을 확인하였다.
From 2006 to 2010, hospitals in Hanoi treated 10 human patients for dirofilariasis. The worms were collected from parasitic places, and identification of the species was completed by morphology and molecular methods. Ten parasites were recovered either from the conjunctiva (n=9) or subcutaneous tissue (n=1). The parasites were 4.0-12.5 cm in length and 0.5-0.6 mm in width. Morphological observations suggested all parasites as Dirofilaria repens. Three of the 10 parasites (1 from subcutaneous tissue and 2 from eyes) were used for molecular confirmation of the species identification. A portion of the mitochondrial cox1 (461 bp) was amplified and sequenced. Nucleotide and amino acid homologies were 95% and 99-100%, respectively, when compared with D. repens (Italian origin, GenBank AJ271614; DQ358814). This is the first report of eye dirofilariasis and the second report of subcutaneous tissue dirofilariasis due to D. repens in Vietnam.
본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템과 얼굴인식에 필요한 GRNN(: Generalized Regression Neural Network) 알고리즘을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.
최근 급격히 발전한 휴대폰은 다양한 기능을 가지고 있다. 그 중 디지털 카메라의 기능을 겸비한 휴대폰은 디지털 카메라의 판매량을 앞서고 있고, 메가픽셀의 고화소 디카폰의 개발로 대중화가 더욱 가속화되고 있다. 카메라폰을 응용한 연구분야로는 생체인식기술을 적용할 수 있으며, 본 논문은 제약이 많은 휴대폰 환경에서 홍채인식기술을 적용하기 위한 휴대폰 카메라로 취득된 얼굴영상에서의 눈 영역을 검출하는 방법을 제안한다. 얼굴영상에서 눈은 피부나 머리카락보다 빛에 대한 반사율이 높아 각막에 specular reflection이 생기게 되고, 동공은 눈의 다른 지역에 비해 흑화소가 많다는 특징을 가지고 있다. 이러한 두 가지 특징을 이용하여 동공 후보 영역을 선정하였고, 선정된 이진영상에서 수평 프로파일과 수직 프로파일을 적용하여 동공 후보 영역을 줄이면서 동공의 중심 위치를 검출한다. 본 연구는 휴대폰 환경을 고려하였기 때문에 최소한의 메모리 사용과 적은 연산량을 목표로 하여 눈의 위치를 검출 한다. 실험 결과, 입력 영상 내에 일정크기의 동공영역이 존재할 경우 높은 눈 영역 추출 성공률을 보이며, 본 연구에서 제안한 알고리즘을 실제 휴대폰에서 수행한 결과 평균571.6ms의 시간이 소요됨을 알 수 있었다.
한국정보컨버전스학회 2008년도 International conference on information convergence
/
pp.113-116
/
2008
In this paper we suggest two novel methods for an implementation of the spot detection phase in the 2-DE gel image analysis program. The one is the adaptive thresholding method for eliminating noises and the other is the asymmetric diffusion model for spot matching. Remained noises after the preprocessing phase cause the over-segmentation problem by the next segmentation phase. To identify and exclude the over-segmented background regions, il we use a fixed thresholding method that is choosing an intensity value for the threshold, the spots that are invisible by one's human eyes but mean very small amount proteins which have important role in the biological samples could be eliminated. Accordingly we suggest the adaptive thresholding method which comes from an idea that is got on statistical analysis for the prominences of the peaks. There are the Gaussian model and the diffusion model for the spot shape model. The diffusion model is the closer to the real spot shapes than the Gaussian model, but spots have very various and irregular shapes and especially asymmetric formation in x-coordinate and y-coordinate. The reason for irregularity of spot shape is that spots could not be diffused perfectly across gel medium because of the characteristics of 2-DE process. Accordingly we suggest the asymmetric diffusion model for modeling spot shapes. In this paper we present a brief explanation ol the two methods and experimental results.
The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.