• Title/Summary/Keyword: Exton hypergeometric functions

Search Result 21, Processing Time 0.024 seconds

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

ANOTHER METHOD FOR PADMANABHAM'S TRANSFORMATION FORMULA FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X8

  • Kim, Yong-Sup;Rathie, Arjun Kumar;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.517-521
    • /
    • 2009
  • The object of this note is to derive Padmanabham's transformation formula for Exton's triple hypergeometric series $X_8$ by using a different method from that of Padmanabham's. An interesting special case is also pointed out.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

APPLICATION OF THE RELATION ASSOCIATED WITH 3F2 DUE TO THOMAE

  • KIM, YONG SUP;LEE, SEUNG WOO;SONG, HYEONG KEE;NAM, IN KYEONG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.133-136
    • /
    • 2004
  • By elementry manipulation of series together with summations of Gauss and $Saalsch\ddot{u}tz$, Exton deduced a new two term relation for the hypergeometric function $_3F_2(1)$. The aim of this paper is to derive Exton's result from Thomae's formula, together with two known integral formulas and the Euler's transformation for $_2F_1$.

  • PDF

CERTAIN NEW GENERATING RELATIONS FOR PRODUCTS OF TWO LAGUERRE POLYNOMIALS

  • CHOI, JUNESANG;RATHIE, ARJUN KUMAR
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.191-200
    • /
    • 2015
  • Generating functions play an important role in the investigation of various useful properties of the sequences which they generate. Exton [13] presented a very general double generating relation involving products of two Laguerre polynomials. Motivated essentially by Exton's derivation [13], the authors aim to show how one can obtain nineteen new generating relations associated with products of two Laguerre polynomials in the form of a single result. We also consider some interesting and potentially useful special cases of our main findings.

Some Generating Relations of Extended Mittag-Leffler Functions

  • Khan, Nabiullah;Ghayasuddin, Mohd;Shadab, Mohd
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.325-333
    • /
    • 2019
  • Motivated by the results on generating functions investigated by H. Exton and many other authors, we derive certain (presumably) new generating functions for generalized Mittag-Leffler-type functions. Specifically, we introduce a new class of generating relations (which are partly bilateral and partly unilateral) involving the generalized Mittag-Leffler function. Also we present some special cases of our main result.