DOI QR코드

DOI QR Code

SEVERAL INTEGRAL REPRESENTATIONS INVOLVING TRIPLE HYPERGEOMETRIC FUNCTIONS

  • Received : 2011.01.31
  • Accepted : 2011.02.25
  • Published : 2011.06.25

Abstract

A (presumably) new class of generalized triple hyper-geometric functions is presented. We also give integral representations of Laplace type for certain special cases of the new class of functions.

Keywords

References

  1. L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
  2. A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
  3. H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113-119.
  4. F.I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973
  5. G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Absorbed power, SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
  6. A.W. Niukkanen, Generalized hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983), 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
  7. H. M. Srivastava, Hypergeometric functions of three variables, Ganita 15(2) (1964), 97-108.
  8. H. M. Srivastava, Some integrals representing hypergeometric functions, Rend. Circ. Mat. Palermo 16(2) (1967), 99-115. https://doi.org/10.1007/BF02844089
  9. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
  10. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.