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REMARK ON TWO RESULTS BY PADMANABHAM
FOR EXTON’S TRIPLE HYPERGEOMETRIC SERIES Xjg

JUuNESANG CHoOI, YONG Supr KiM, JU HEE PARK,
ARJUN K. RATHIE, AND SEUNG WO0OO LEE

Abstract. In 1999 and 2003, Padmanabham established two re-
sults (one each) for Exton’s triple hypergecmetric series Xg. We
aim at showing that Exton’s later result can be derived from his

former one.

1. Introduction and Preliminaries

In 1982, Exton [2] introduced a set of 20 triple hypergeometric series
X1 to Xgg of which we recall here the definition of Xj:

XB(aa ba C; da €, f7 z, Y, Z)

(1.1) _ - (@)2min+p (B)n ()px™ Y™ 2P
B Z ?d;m?e)n (f)pm!n!p!

m,n,p=0

where (o), :==T'(a+n)/T'(a) (¢ #0, -1, -2,...; n=0,1,2, ...).
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The precise three-dimensional region of convergence of (1.1) is given

by Srivastava and Karlsson (8, p. 101, Entry 41a):

dr=(s+t—1)2% |z|<r, |y/<s, and |z| <t

where the positive quantities 7, s and t are associated radii of conver-
gence. For details about this function and many other three-variables

hypergeometric functions, one refers to Srivastava and Karlsson 8].

Exton [2] gave the following Laplace integral representation of (1.1):

(1.2)
Xg(a, ba c; d, €, f; z, Yy, Z)
1 (o 0]
= - / et ut o Fi(—; d; Wl 2) 1 Fi(b; e; uy) 1 Fi(c; f; uz) du,
T(a) Jo

provided R(a) > 0.

It may be remarked in passing that Xg reduces to Horn’s function
H4 when z — 0 and the Appell’s function F; when z — 0.

Srivastava and Panda [9, p. 423, Eq.(26)] presented a definition of a

general double hypergeometric function:

FPigik (ap) : (bg) 5 (ck) ;
ETT (o) (Bm) 5 ()
- H?:l (@j)r+s H;z:l (0)r f 1 (¢j)s =" y°

n

- 7, 5=0 Hé’:l (aj)T+S ;r-L_—l (ﬂj)r Hj:l ('Yj)s rlsl ’

b

where the several cases of convergence conditions are given in [7, p. 64].
Note that Srivastava and Panda’s function (1.3) is more general than
the one defined by Kampé de Fériet [3] (¢f Appell et Kampé de Fériet
(1, p. 150, Eq.(29)].
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In 1999, Padmanabham [4] obtained the following result for Exton’s
triple hypergeometric series Xg:

XS(aa ba c; da €, f7 z, Y, Z)

i (a)n (b "y" R -n, 1—n—e,b;_f
(1.4) (e)n

o l1-n—-0b, f Y

X9 F1 d

1 1 1 1

lat+in, la+in+2

2 2 2 2 2,
,44

In 2003, Padmanabham [4] established the following result for Xs:
(1.5)

Xs(a, b,b;d, ¢, c; z, —z, )

1 1 1, . .
2:2:0 §a, §a+§ . b, c—b y T T T 2
=F; . z°, 4x
0:3;1 1 1 !
—-——— 1 ¢ 56 5¢+5 ; d

o=

with the help of the following classical Dixon’s theorem [6, p. 92] for the
well poised 3 F5(1):

a, b ¢
l+4a—-b,14+a—c

3Fy

|

(1.6) :I‘(l+%a)1“(1+a—b)1’(1+a—c)1"(1+%a—b—c)

I‘(1+a)F(1+%a—b)I‘(lﬂ—%a-—C)F(lﬁ-a—b—c)
(R(a—2b—2c) > —2).

The object of this note is to show how the identity (1.5) can be derived
by starting with (1.4).
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2. Derivation of (1.5) from (1.4)

Replacing ¢ by b, e and f by ¢, y by ~z, and z by z in (1.4), we have
Xg = Xs(a, b,b;d, ¢, c; 2, —7, )

_ i (@)n (B)n (—z)" 3B -n, by l-n-c )
(2.1) = (©nn l-n—-b ¢ '
1 1
X9 Fq [ia-f—%n, ia+%n+§;4mJ.

Applying Dixon’s theorem (1.6) to 3F2(1) in (2.1), we obtain
(2.2)
a)n(b ta+in, latln4+1
Xg )y |20 T2 29T 2 2.4
Z r(-a)" g

:1:] A(b, ¢; n),

where, for convenience,
TN(e)T(1~b-—n)T(1—4in) T (c-b+1n)
Fle=b)T(1-n)T(c+3n) T (1-b-1n)

By making use of Legendre’s duplication formula for the Gamma func-

A(b, ¢; n) =

tion:
() rea-smnion(end)
we have
oy Tl =b-n)T'(c—b+ in) 27T (1)
A(b, ¢; n) = Te— )T (e 1n) F(l—b_zén) .I‘(%—in)’

from which we see that
(2.3) A(b,c;n)=0
whenever n is an odd positive integer.
Considering (2.3), we can rewrite X3 in (2.2) as follows:
[os] 1 1 1
:Z a)2n (b)on 2 2F1 sa+mn, §a+§+n;4x
(C gn (271 d

F(e)T(1-b-2n)T(c—-b+n) 22T (1)
L(c=b)T(c+n)T(1-b-n) T(:-n)

(2.4)




Triple hypergeometric series X3 607

Now, in (2.4), using the following well-known identities:
I'(a-n) (=1)”
INE) (1-a)

and

we get
(2.5)

> B (e=b)n (39), (30+3)y om
XS_T;) (C)n (%C)n 2%04_ %)n 7’L2 -T2 oFy

Finally express oF in (2.5) as a series and use the identity

la+n, fa+i+n
d

s dx

(a)n (a + n)m = (a)m+n,

we have

oo 00 1 1 2
(30 mn( a+3)4n (On(c—b)n 27 (42)™
B2 2 T G B, Ger D), @t

which, upon using (1.3), becomes (1.5). This completes our desired

n=0 m=0

proof.
We conclude by noting that the result (1.5) in Padmanabham’s paper

[5] contains several misprints.
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