REMARK ON TWO RESULTS BY PADMANABHAM FOR EXTON'S TRIPLE HYPERGEOMETRIC SERIES X_8

JUNESANG CHOI, YONG SUP KIM, JU HEE PARK, ARJUN K. RATHIE, AND SEUNG WOO LEE

Abstract. In 1999 and 2003, Padmanabham established two results (one each) for Exton's triple hypergeometric series X_8 . We aim at showing that Exton's later result can be derived from his former one.

1. Introduction and Preliminaries

In 1982, Exton [2] introduced a set of 20 triple hypergeometric series X_1 to X_{20} of which we recall here the definition of X_8 :

(1.1)
$$= \sum_{m,n,p=0}^{\infty} \frac{(a)_{2m+n+p} (b)_n (c)_p x^m y^n z^p}{(d)_m (e)_n (f)_p m! n! p!},$$

where
$$(\alpha)_n := \Gamma(\alpha+n)/\Gamma(\alpha)$$
 $(\alpha \neq 0, -1, -2, \ldots; n = 0, 1, 2, \ldots)$.

The third-named author was supported by WonKwang University Research Assistantship in 2005. The fifth-named author was supported by Wonkwang University in 2005.

Received July 18, 2005. Accepted October 4, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 33C20, 33C60; Secondary 33C70, 33C65.

Key words and phrases: Triple hypergeometric series X_8 , Horn functions, Laplace integral, Srivastava and Panda's function, Dixon's summation theorem for ${}_3F_2(1)$.

The precise three-dimensional region of convergence of (1.1) is given by Srivastava and Karlsson [8, p. 101, Entry 41a]:

$$4r = (s+t-1)^2$$
, $|x| < r$, $|y| < s$, and $|z| < t$

where the positive quantities r, s and t are associated radii of convergence. For details about this function and many other three-variables hypergeometric functions, one refers to Srivastava and Karlsson [8].

Exton [2] gave the following Laplace integral representation of (1.1): (1.2)

$$X_8(a, b, c; d, e, f; x, y, z)$$

$$=\frac{1}{\Gamma(a)}\,\int_0^\infty\,e^{-u}\,u^{a-1}\,{}_0F_1(-;\,d\,;\,u^2\,x)\,{}_1F_1(b\,;\,e\,;\,u\,y)\,{}_1F_1(c\,;\,f\,;\,u\,z)\,du,$$

provided $\Re(a) > 0$.

It may be remarked in passing that X_8 reduces to Horn's function H_4 when $z \to 0$ and the Appell's function F_2 when $x \to 0$.

Srivastava and Panda [9, p. 423, Eq.(26)] presented a definition of a general double hypergeometric function:

(1.3)
$$F_{l:m;n}^{p:q;k} \begin{bmatrix} (a_p) : (b_q) ; (c_k) ; \\ (\alpha_l) : (\beta_m) ; (\gamma_n) ; \end{bmatrix} \\ = \sum_{r,s=0}^{\infty} \frac{\prod_{j=1}^{p} (a_j)_{r+s} \prod_{j=1}^{q} (b_j)_r \prod_{j=1}^{k} (c_j)_s x^r y^s}{\prod_{j=1}^{l} (\alpha_j)_{r+s} \prod_{j=1}^{m} (\beta_j)_r \prod_{j=1}^{n} (\gamma_j)_s r! s!},$$

where the several cases of convergence conditions are given in [7, p. 64]. Note that Srivastava and Panda's function (1.3) is more general than the one defined by Kampé de Fériet [3] (cf. Appell et Kampé de Fériet [1, p. 150, Eq.(29)].

In 1999, Padmanabham [4] obtained the following result for Exton's triple hypergeometric series X_8 :

(1.4)
$$X_{8}(a, b, c; d, e, f; x, y, z) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(e)_{n} n!} y^{n} {}_{3}F_{2} \begin{bmatrix} -n, 1-n-e, b \\ 1-n-b, f \end{bmatrix}; -\frac{z}{y}$$

$$\times_{2} F_{1} \begin{bmatrix} \frac{1}{2}a + \frac{1}{2}n, & \frac{1}{2}a + \frac{1}{2}n + \frac{1}{2} \\ d \end{bmatrix}.$$

In 2003, Padmanabham [4] established the following result for X_8 : (1.5)

$$X_{8}(a, b, b; d, c, c; x, -x, x)$$

$$= F_{0:3;1}^{2:2;0} \begin{bmatrix} \frac{1}{2}a, \frac{1}{2}a + \frac{1}{2} & : b, c - b & ; --- & ; \\ --- & : c, \frac{1}{2}c, \frac{1}{2}c + \frac{1}{2} & ; d & ; \end{bmatrix} x^{2}, 4x$$

with the help of the following classical Dixon's theorem [6, p. 92] for the well poised ${}_3F_2(1)$:

$${}_{3}F_{2}\begin{bmatrix} a, b, c \\ 1+a-b, 1+a-c \end{bmatrix}; 1$$

$$= \frac{\Gamma\left(1+\frac{1}{2}a\right)\Gamma(1+a-b)\Gamma(1+a-c)\Gamma\left(1+\frac{1}{2}a-b-c\right)}{\Gamma(1+a)\Gamma\left(1+\frac{1}{2}a-b\right)\Gamma\left(1+\frac{1}{2}a-c\right)\Gamma(1+a-b-c)}$$

$$(\Re\left(a-2b-2c\right)>-2).$$

The object of this note is to show how the identity (1.5) can be derived by starting with (1.4).

2. Derivation of (1.5) from (1.4)

Replacing c by b, e and f by c, y by -x, and z by x in (1.4), we have

$$X_8 := X_8(a, b, b; d, c, c; x, -x, x)$$

(2.1)
$$= \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} (-x)^n {}_3F_2 \begin{bmatrix} -n, & b, & 1-n-c \\ 1-n-b, & c \end{bmatrix}; 1$$

$$\times_2 F_1 \begin{bmatrix} \frac{1}{2}a + \frac{1}{2}n, & \frac{1}{2}a + \frac{1}{2}n + \frac{1}{2} \\ d \end{bmatrix}.$$

Applying Dixon's theorem (1.6) to $_3F_2(1)$ in (2.1), we obtain (2.2)

$$X_8 = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n n!} (-x)^n {}_2F_1 \begin{bmatrix} \frac{1}{2}a + \frac{1}{2}n, & \frac{1}{2}a + \frac{1}{2}n + \frac{1}{2} \\ & d \end{bmatrix}; 4x \mathcal{A}(b, c; n),$$

where, for convenience,

$$\mathcal{A}(b,\,c\,;\,n) := \frac{\Gamma(c)\,\Gamma(1-b-n)\,\Gamma\left(1-\frac{1}{2}n\right)\,\Gamma\left(c-b+\frac{1}{2}n\right)}{\Gamma(c-b)\,\Gamma(1-n)\,\Gamma\left(c+\frac{1}{2}n\right)\,\Gamma\left(1-b-\frac{1}{2}n\right)}.$$

By making use of Legendre's duplication formula for the Gamma function:

$$\Gamma\left(\frac{1}{2}\right)\Gamma\left(2\alpha\right) = 2^{2\alpha-1}\Gamma\left(\alpha\right)\Gamma\left(\alpha + \frac{1}{2}\right),$$

we have

$$\mathcal{A}(b, c; n) = \frac{\Gamma(c) \Gamma(1-b-n) \Gamma\left(c-b+\frac{1}{2}n\right)}{\Gamma(c-b) \Gamma\left(c+\frac{1}{2}n\right) \Gamma\left(1-b-\frac{1}{2}n\right)} \cdot \frac{2^n \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}-\frac{1}{2}n\right)},$$

from which we see that

$$\mathcal{A}(b, c; n) = 0$$

whenever n is an odd positive integer.

Considering (2.3), we can rewrite X_8 in (2.2) as follows:

(2.4)
$$X_{8} = \sum_{n=0}^{\infty} \frac{(a)_{2n} (b)_{2n} x^{2n}}{(c)_{2n} (2n)!} {}_{2}F_{1} \begin{bmatrix} \frac{1}{2}a + n, & \frac{1}{2}a + \frac{1}{2} + n \\ d \end{bmatrix}; 4x \\ \times \frac{\Gamma(c) \Gamma(1 - b - 2n) \Gamma(c - b + n)}{\Gamma(c - b) \Gamma(c + n) \Gamma(1 - b - n)} \cdot \frac{2^{2n} \Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2} - n)}.$$

Now, in (2.4), using the following well-known identities:

$$\frac{\Gamma(\alpha - n)}{\Gamma(\alpha)} = \frac{(-1)^n}{(1 - \alpha)_n}$$

and

$$(\alpha)_{2n} = 2^{2n} \left(\frac{\alpha}{2}\right)_n \left(\frac{\alpha}{2} + \frac{1}{2}\right)_n$$

we get

(2.5)

$$X_8 = \sum_{n=0}^{\infty} \frac{(b)_n (c-b)_n \left(\frac{1}{2}a\right)_n \left(\frac{1}{2}a + \frac{1}{2}\right)_n}{(c)_n \left(\frac{1}{2}c\right)_n \left(\frac{1}{2}c + \frac{1}{2}\right)_n n!} x^{2n} {}_2F_1 \begin{bmatrix} \frac{1}{2}a + n, & \frac{1}{2}a + \frac{1}{2} + n \\ d & d \end{bmatrix}; 4x$$

Finally express ${}_{2}F_{1}$ in (2.5) as a series and use the identity

$$(\alpha)_n (\alpha + n)_m = (\alpha)_{m+n},$$

we have

$$X_8 = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\left(\frac{1}{2}a\right)_{m+n} \left(\frac{1}{2}a + \frac{1}{2}\right)_{m+n} (b)_n (c-b)_n x^{2n} (4x)^m}{(c)_n \left(\frac{1}{2}c\right)_n \left(\frac{1}{2}c + \frac{1}{2}\right)_n (d)_m n! m!},$$

which, upon using (1.3), becomes (1.5). This completes our desired proof.

We conclude by noting that the result (1.5) in Padmanabham's paper [5] contains several misprints.

References

- [1] P. Appell et J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques Polynomes D'Hermite, Gauthier-Villars, Paris, 1926.
- [2] H. Exton, Hypergeometric function of three variables, J. Indian Acad. Maths. 4(2) (1982), 113-119.
- [3] J. Kampé de Fériet Les fonctions hypergéométriques d'ordre supérieur à deux variables, C. R. Acad. Sci. Paris 173 (1921), 401-404.
- [4] P. A. Padmanabham, Two results on three variables hypergeometric functions, Indian J. Pure Appl. Math. 30(1) (1999), 1107-1109.
- P. A. Padmanabham, Expansions for a multiple hypergeometric function, Ganita 54(1) (2003), 17-20.

- [6] E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
- [7] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester); Wiley, New York, Chichester, Brisbane, and Toronto, 1984.
- [8] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester); Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
- [9] H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. (2) 12 (1976), 419-425.

Junesang Choi

Department of Mathematics, College of Natural Sciences

Dongguk University

Kyongju 780-714, Republic of Korea

Email: junesang@mail.dongguk.ac.kr

Yong Sup Kim and Ju Hee Park Department of Mathematics Wonkwang University Iksan 570-749, Korea

Email: yspkim@wonkwang.ac.kr

Arjun K. Rathie

Department of Mathematics, Govt. Sujangarh College

Distt. Churu, Rajasthan State, India

Email: akrathie@rediffmail.com

Seung Woo Lee Department of Mathematics WonKwang University Iksan 570-749, Korea

Email: swlee@wonkwang.ac.kr