• Title/Summary/Keyword: Experimental Design Technique

Search Result 1,035, Processing Time 0.027 seconds

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : I. Preliminary Investigation (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : I. 예비연구)

  • Park, Chul-Soo;Mok, Young-Jin;Choi, Chan-Yong;Lee, Tai-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.45-55
    • /
    • 2009
  • The quality of railroad trackbed fills has been controlled by field measurements of density and bearing resistance of plate-load tests. The control measures are compatible with the design procedures whose design parameter is $k_{30}$ for both ordinary-speed railways and high-speed railways. However, one of fatal flaws of the design procedures is that there are no simple laboratory measurement procedures for the design parameters ($k_{30}$ or, $E_{v2}$ and $E_{v2}/E_{v1}$) in design stage. To overcome the defect, the compressional wave velocity was adopted as a control measure, in parallel with the advent of the new design procedure, and its measurement technique was proposed in the preliminary investigation. The key concept of the quality control procedure is that the target value for field compaction control is the compressional wave velocity determined at optimum moisture content using modified compaction test, and direct-arrival method is used for the field measurements during construction, which is simple and reliable enough for practice engineers to access. This direct-arrival method is well-suited for such a shallow and homogeneous fill lift in terms of applicability and cost effectiveness. The sensitivity of direct-arrival test results according to the compaction quality was demonstrated at a test site, and it was concluded that compressional wave velocity can be effectively used as quality control measure. The experimental background far the companion study (Park et al., 2009) was established through field and laboratory measurements of the compressional wave velocity.

Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n - 1, 2n+1 - 1}

  • Taheri, MohammadReza;Navi, Keivan;Molahosseini, Amir Sabbagh
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.596-607
    • /
    • 2020
  • Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)-based DSPs, scaling represents a performance bottleneck based on the complexity of intermodulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well-known moduli sets {2n - 1, 2n, 2n + 1} and {2n, 2n - 1, 2n+1 - 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic-friendly moduli set {2n+p, 2n - 1, 2n+1 - 1}. The proposed algorithm yields high speed and energy-efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed-radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.

Retiming for SoC Using Single-Phase Clocked Latches (싱글 페이즈 클락드 래치를 이용한 SoC 리타이밍)

  • Kim Moon-Su;Rim Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.1-9
    • /
    • 2006
  • In the System-on-Chip(SoC) design, the global wires are critical parts for the performance. Therefore, the global wires need to be pipelined using flip-flops or latches. Since the timing constraint of the latch is more flexible than it of the flip-flop, the latch-based design can provide a better solution for the clock period. Retiming is an optimizing technique which repositions memory elements in the circuits to reduce the clock period. Traditionally, retiming is used on gate-level netlist, but retiming for SoC is used on macro-level netlist. In this paper, we extend the previous work of retiming for SoC using flip-flops to retiming for SoC using single-phase clocked latches. In this paper we propose a MILP for retiming for SoC using single-phase clocked latches, and apply the fixpoint computation to solve it. Experimental results show that retiming for SoC using latches reduces the clock period of circuits by average 10 percent compared with retiming for SoC using flip-flops.

Experimental and Analytical Study on the Steel Beam bonded with CFRP Strip (레진으로 접착 보강한 강재보의 거동)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, the behaviour of composite steel-CFRP members is studied experimentally and using FE-analysis. The use of advance composite materials in construction for repair and rehabilitation has become a frequent used method in the last decade. FRP composites have many advantages over the traditional technique of steel bonding for a number of reasons: 1. Composites add little or no additional weight to a building, eliminating the need for costly foundation strengthening. 2. FRP composites are very thin (1.2mm to 1.4mm). So there is no loss of floor space and negligible effect over the architectural aspect. 3. FRP composites do not corrode, this makes it long lasting. However, the method is yet to become a mainstream application due to a number of economical and design related issues. Brittle debonding failure, aging effect on bonding, broad based awareness and proper design guidelines are the main concern for future research works. This paper is focused on the ultimate load carrying capacity of the CFRP-strengthened beams and their effect on the deflection and failures modes by varying the amount of CFRP content.

Design of Fuzzy Inference-based Deterioration Diagnosis System through Different Image (차 영상을 통한 퍼지 추론 기반 열화 진단 시스템 설계)

  • Kim, Jong-Bum;Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Young-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • In this paper, we design fuzzy inference-based deterioration diagnosis system through different image for rapid as well as efficient diagnosis of electrical equipments. When the deterioration diagnosis of the electrical equipment starts, abnormal state of assigned area is detected by comparing with the temperature of the first normal state of the area. Deterioration state of detected area is diagnosed by using fuzzy inference algorithm. In the fuzzy inference algorithm, fuzzy rules are defined by If-then form and are described as look-up table. Both temperature and its ensuing variation are used as input variables. While triangular membership function is used for the fuzzy input variables of fuzzy rules, singleton membership function is used for the output variable of fuzzy rules. The final output is calculated by using the center of gravity of fuzzy inference method. Experimental data acquired from individual electrical equipments is used in order to evaluate the output performance of the proposed system.

A Hysteresis & PI Current Controller Response Characteristic of SRM (스위치드 릴럭턴스 전동기의 히스테리시스 및 PI 전류제어기 응답특성)

  • Kim, Dong-Hee;Baik, Won-Sik;Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.25-31
    • /
    • 2007
  • This paper presents a comparison of different current controller response characteristics of SRM. The most common current controllers of the SRM is hysteresis type. The hysteresis controller is easy to implement and fast current control response, but has the inherent disadvantage of switching frequency variations. The other common type of current controller is PI scheme. The design of a classical PI current controller with fixed parameters for SRM is not an easy task due to the extreme nonlinear characteristics. In this paper, some linearization technique is used for design of PI current controller. Experimental results of 1-hp SRM are presented for the basic reference data which can be used to select the proper current control scheme according to the applications.

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

Aero-elastic wind tunnel test of a high lighting pole

  • Luo, Yaozhi;Wang, Yucheng;Xie, Jiming;Yang, Chao;Zheng, Yanfeng
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2017
  • This paper presents a 1:25 multi-freedom aero-elastic model for a high lighting pole at the Zhoushan stadium. To validate the similarity characteristics of the model, a free vibration test was performed before the formal test. Beat phenomenon was found and eliminated by synthesis of vibration in the X and Y directions, and the damping ratio of the model was identified by the free decay method. The dynamic characteristics of the model were examined and compared with the real structure; the similarity results were favorable. From the test results, the major along-wind dynamic response was the first vibration component. The along-wind wind vibration coefficient was calculated by the China code and Eurocode. When the peak factor equaled 3.5, the coefficient calculated by the China code was close to the experimental result while Eurocode had a slight overestimation of the coefficient. The wind vibration coefficient during typhoon flow was analyzed, and a magnification factor was suggested in typhoon-prone areas. By analyzing the power spectrum of the dynamic cross-wind base shear force, it was found that a second-order vortex-excited resonance existed. The cross-wind response in the test was smaller than Eurocode estimation. The aerodynamic damping ratio was calculated by random decrement technique and the results showed that aerodynamic damping ratios were mostly positive at the design wind speed, which means that the wind-induced galloping phenomenon is predicted not to occur at design wind speeds.