Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0408

Efficient programmable power-of-two scaler for the three-moduli set {2n+p, 2n - 1, 2n+1 - 1}  

Taheri, MohammadReza (Faculty of Computer Science and Engineering, Shahid Beheshti University)
Navi, Keivan (Faculty of Computer Science and Engineering, Shahid Beheshti University)
Molahosseini, Amir Sabbagh (Department of Computer Engineering, Kerman Branch, Islamic Azad University)
Publication Information
ETRI Journal / v.42, no.4, 2020 , pp. 596-607 More about this Journal
Abstract
Scaling is an important operation because of the iterative nature of arithmetic processes in digital signal processors (DSPs). In residue number system (RNS)-based DSPs, scaling represents a performance bottleneck based on the complexity of intermodulo operations. To design an efficient RNS scaler for special moduli sets, a body of literature has been dedicated to the study of the well-known moduli sets {2n - 1, 2n, 2n + 1} and {2n, 2n - 1, 2n+1 - 1}, and their extension in vertical or horizontal forms. In this study, we propose an efficient programmable RNS scaler for the arithmetic-friendly moduli set {2n+p, 2n - 1, 2n+1 - 1}. The proposed algorithm yields high speed and energy-efficient realization of an RNS programmable scaler based on the effective exploitation of the mixed-radix representation, parallelism, and a hardware sharing technique. Experimental results obtained for a 130 nm CMOS ASIC technology demonstrate the superiority of the proposed programmable scaler compared to the only available and highly effective hybrid programmable scaler for an identical moduli set. The proposed scaler provides 43.28% less power consumption, 33.27% faster execution, and 28.55% more area saving on average compared to the hybrid programmable scaler.
Keywords
ASIC; computer arithmetic; digital signal processing; programmable scaler; residue number system (RNS) scaler; VLSI Design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Latha, R. R. Rachh, and P. V. A. Mohan, RNS-to-binary converters for a three-moduli set ${2^{n-1}-1,\;2^n-1,\;2^{n+k}$, IETE J. Edu. 58 (2017), no. 1, 20-28.   DOI
2 S. Kumar and C.-H. Chang, A VLSI-efficient signed magnitude comparator for ${2^n-1,\;2^n,\;2^{n+1}-1}$ RNS, EE Int. Symp. Circuits Syst. (Montreal, Canada), May 2016, 1966-1969.
3 P. Patronik and S. J. Piestrak, Hardware/software approach to designing low-power RNS-enhanced arithmetic units, IEEE Trans. Circuits Syst. I 64 (2017), no. 5, 1031-1039.   DOI
4 A. Hiasat, New residue number system scaler for the three-moduli set ${2^{n+1}-1,\;2^n,\;2^n-1}$, Computers 7 (2018), no. 3, 46.   DOI
5 A. Hiasat and L. Sousa, On the design of RNS inter-modulo processing units for the arithmetic-friendly moduli sets ${2^{n+k},\;2^n-1,\;2^{n+1}-1}$, Comput. J. 62 (2018), no. 2, 292-300.
6 S. J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders, IEEE Trans. Comput. 43 (1994), no. 1, 68-77.   DOI
7 H. T. Vergos and G. Dimitrakopoulos, On modulo $2^n+1$ adder design, IEEE Trans. Comput. 61 (2010), no. 2, 173-186.   DOI
8 A. E. Zarandi et al., Reverse converter design via parallel-prefix adders: Novel components, methodology, and implementations, IEEE Trans. VLSI Syst. 23 (2014), no. 2, 374-378.
9 A. Tyagi, A reduced-area scheme for carry-select adders, IEEE Trans. Comput. 42 (1993), no. 10, 1163-1170.   DOI
10 L. Kalampoukas et al., High-speed parallel-prefix module $2^n-1$ adders, IEEE Trans. Comput. 49 (2000), no. 7, 673-680.   DOI
11 H. T. Vergos, C. Efstathiou, and D. Nikolos, Diminished-one modulo $2^n+1$ adder design, IEEE Trans. Comput. 51 (2002), no. 12, 1389-1399.   DOI
12 R. Muralidharan and C.-H. Chang, Area-power efficient modulo $2^n-1$ and modulo $2^n+1$ multipliers for ${2^n-1,\;2^n,\;2^n+1} $ based RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 10, 2263-2274.   DOI
13 R. Zimmermann, Binary adder architectures for cell-based VLSI and their synthesis, PhD Thesis, Swiss Federal Institute of Technology, Zurich, 1998.
14 Z. Ulman, M. Czyzak, and J. Zurada, Effective RNS scaling algorithm with the Chinese remainder theorem decomposition, in Proc. IEEE Pacific Rim Conf. Commun. Comput. Signal Process. (Victoria, Canada), May 1993, pp. 528-531.
15 C. -H. Chang and J. Y. S. Low, Simple, fast, and exact RNS scaler for the three-moduli set ${2^n-1,\;2^n,\;2^n+1}$, IEEE Trans. Circuits Syst. I 58 (2011), no. 11, 2686-2697.   DOI
16 L. Sousa, $2^n$ RNS scalers for extended 4-moduli sets, IEEE Trans. Comput. 64 (2015), no. 12, 3322-3334.   DOI
17 Z. D. Ulman and M. Czyzak, Highly parallel, fast scaling of numbers in nonredundant residue arithmetic, IEEE Trans. Signal Process. 46 (1998), no. 2, 487-496.   DOI
18 M. Griffin, F. Taylor, and M. Sousa, New scaling algorithms for the Chinese remainder theorem, in Proc. Twenty-Second Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), 1988, pp. 375-378.
19 M. Griffin, M. Sousa, and F. Taylor, Efficient scaling in the residue number system, in Proc. Int. Conf. Acoustics, Speech, Signal Process. (Glasgow, UK), May 1989, pp. 1075-1078.
20 M. A. P. Shenoy and R. Kumaresan, A fast and accurate RNS scaling technique for high speed signal processing, IEEE Trans. Signal Process. 37 (1989), no. 6, 929-937.   DOI
21 Y. Kong and B. Phillips, Fast scaling in the residue number system, IEEE Trans. VLSI Syst. 17 (2009), no. 3, 443-447.   DOI
22 F. Barsi and M. C. Pinotti, Fast base extension and precise scaling in RNS for look-up table implementations, IEEE Trans. Signal process. 43 (1995), no. 10, 2427-2430.   DOI
23 M. Dasygenis et al,, A full-adder-based methodology for the design of scaling operation in residue number system, IEEE Trans. Circuits Syst. I 55 (2008), no. 2, 546-558.   DOI
24 N. Burgess, Scaling an RNS number using the core function, in Proc. IEEE Symp. Comput. Arithmetic (Santiago de Compostela, Spain), June 2003, pp. 262-269.
25 S. Ma et al., A $2^n$ scaling scheme for signed RNS integers and its VLSI implementation, Sci. China Inf. Sci. 53 (2010), no. 1, 203-212.   DOI
26 A. García and A. Lloris, A look-up scheme for scaling in the RNS, IEEE Trans. Comput. 48 (1999), no. 7, 748-751.   DOI
27 A. Garcia and A. Lloris, RNS scaling based on pipelined multipliers for prime moduli, in Proc. IEEE Workshop Signal Process. Syst. SIPS Design Implementation (Cambridge, MA, USA), Oct. 1998, pp. 459-468.
28 T. F. Tay, C.-H. Chang, and J. Y. S. Low, Efficient VLSI implementation of $2^n$ scaling of signed integer in RNS ${2^n-1,\;2^n,\;2^n+1}$, IEEE Trans. VLSI Syst. 21 (2012), no. 10, 1936-1940.
29 A. S. Molahosseini et al., Efficient MRC-based residue to binary converters for the new moduli sets ${2^{2n},\;2^n-1,\;2^{n+1}-1}$ and ${2^{2n},\;2^n-1,\;2^{n-1}-1}$, IEICE Trans. Inf. Syst. 92 (2009), no. 9, 1628-1638.   DOI
30 C. -H. Chang et al., Residue number systems: A new paradigm to datapath optimization for low-power and high-performance digital signal processing applications, IEEE Circ. Syst. Mag. 15 (2015), no. 4, 26-44.   DOI
31 M. Xu, Z. Bian, and R. Yao, Fast sign detection algorithm for the RNS moduli set ${2^{n+1}-1,\;2^n-1,\;2^n}$, IEEE Trans. VLSI Syst. 23 (2014), no. 2, 379-383.
32 V. Niras and Y. Kong, Fast sign-detection algorithm for residue number system moduli set ${2^n-1,\;2^n,\;2^{n+1}-1}$, IET Comput. Digital Tec. 10 (2016), no. 2, 54-58.   DOI
33 P. V. A. Mohan, RNS-to-binary converter for a new three-moduli set ${2^{n+1}-1,\;2^n,\;2^n-1}$, IEEE Trans. Circuits Syst. II 54 (2007), no. 9, 775-779.   DOI
34 G. L. Bernocchi et al., Low-power adaptive filter based on RNS components, in Proc. IEEE Int. Symp. Circuits Syst. (New Orleans, LA, USA), May (2007), pp. 3211-3214.
35 J. Y. S. Low, T. F. Tay, and C.-H. Chang, A unified ${2^n-1,\;2^n,\;2^n+1}$ RNS scaler with dual scaling constants, in Proc. IEEE Asia Pacific Conf. Circuits Syst. (Kaohsiung, Taiwan), Dec. 2012, pp. 296-299.
36 J. Y. S. Low and C.-H. Chang, A VLSI efficient programmable power- of-two scaler for ${2^n-1,\;2^n,\;2^n+1}$ RNS, IEEE Trans. Circuits Syst. I 59 (2012), no. 12, 2911-2919.   DOI
37 A. Hiasat, Efficient RNS scalers for the extended three-moduli set ${2^n-1,\;2^{n+p},\;2^n+1}$, IEEE Trans. Comput. 66 (2017), no. 7, 1253-1260.   DOI
38 W. Wang et al., A high-speed residue-to-binary converter for three-moduli $(2^k,\;2^{k-1},\;2^{k-1}-1)$ RNS and a scheme for its VLSI implementation, IEEE Trans. Circuits Syst. II 47 (2000), no. 12, 1576-1581.   DOI
39 A. Hiasat, An efficient reverse converter for the three-moduli set $(2^{n+1}-1,\;2^n,\;2^n-1)$, IEEE Trans. Circuits Syst. II 64 (2016), no. 8, 962-966.   DOI