• Title/Summary/Keyword: Experience of Learning

Search Result 2,503, Processing Time 0.028 seconds

An Analysis of Justification Process in the Proofs by Mathematically Gifted Elementary Students (수학 영재 교육 대상 학생의 기하 인지 수준과 증명 정당화 특성 분석)

  • Kim, Ji-Young;Park, Man-Goo
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2011
  • The purpose of this research is to analyze geometrical level and the justification process in the proofs of construction by mathematically gifted elementary students. Justification is one of crucial aspect in geometry learning. However, justification is considered as a difficult domain in geometry due to overemphasizing deductive justification. Therefore, researchers used construction with which the students could reveal their justification processes. We also investigated geometrical thought of the mathematically gifted students based on van Hieles's Theory. We analyzed intellectual of the justification process in geometric construction by the mathematically gifted students. 18 mathematically gifted students showed their justification processes when they were explaining their mathematical reasoning in construction. Also, students used the GSP program in some lessons and at home and tested students' geometric levels using the van Hieles's theory. However, we used pencil and paper worksheets for the analyses. The findings show that the levels of van Hieles's geometric thinking of the most gifted students were on from 2 to 3. In the process of justification, they used cut and paste strategies and also used concrete numbers and recalled the previous learning experience. Most of them did not show original ideas of justification during their proofs. We need to use a more sophisticative tasks and approaches so that we can lead gifted students to produce a more creative thinking.

A Study on the Space Innovation of Public Libraries Belonging to Chungcheongnam-do Office of Education (충남교육청 소속 공공도서관의 공간혁신에 관한 연구)

  • Lim, Jeong-Hoon;Oh, Hyoung-Seok;Lee, Byeong-Ki
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.4
    • /
    • pp.103-126
    • /
    • 2021
  • This study aims to propose a plan to restructure libraries as a complex space for education and culture for 19 public libraries belonging to the Chungcheongnam-do Office of Education. For the purpose of this, case surveys and user surveys of complex facilities of domestic and foreign public institutions were conducted. Based on the findings, a space restructuring strategy was suggested by dividing the library space into the following ways: a space to learn (a comprehensive data room, a theme data inquiry room, a future classroom, a blended learning center, a STEAM training room, and an online lecture learning room), a space to express (a foyer, a maker room, a digital media creation room and an online lecture production room), a space to share (a club room, a group study room, a well-being complex culture space, a convenient living space, rest area, and a browsing area), and a space to enjoy (a performance-thought playground, infant and child archives, a digital virtual experience room, a specialized alcove room, and an outdoor reading room). In addition, a restructuring model of public libraries belonging to the Office of Education was proposed, such as a leading model, a basic model, a joint model, and a minimum model, in consideration of the size of the building, the size of the library, and the level of service and space.

Analysis of Teaching Behavior and Visual Attention according to Teacher's Career in Elementary Science Inquire-based Class on Respiration (탐구형 초등과학수업 '호흡' 차시에서 교사의 경력에 따른 교수행동 및 시각적 주의 분석)

  • Kim, Jang-Hwan;Shin, Won-Sub;Shin, Dong-Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.206-218
    • /
    • 2018
  • The purpose of this study is to analyze the teaching behaviors and visual attention according to teacher's career in Elementary Science Inquire-based Class. Participants were four elementary school teachers in Seoul. They were all in grade 5 and taught science. According to the experience of elementary science education, two novice teachers and two expert teachers were identified. Participants taught Respiration in the 'Structure and Function of our Body' in the elementary science fifth grade. The mobile eye tracker used in this study is SMI's ETG 2w, which is a binocular tracking system. In addition, a video camera was installed behind the classroom to record the entire class. We recorded all the contents of the recorded video and analyzed the results. In this study, the actual practice time, participant's visual attention, and decentralized attention ability were analyzed by class phase. The results of the study are as follows. First, there was a difference between planned class time and actual practice time. The novice teachers were having difficulty in reconstructing the contents of education, and the expert teachers were reconstructing the curriculum and interacting with the students with high understanding and application of the curriculum. There were many differences between the novice teachers and the expert teachers in the tour guidance to confirm student activities. Second, if we look at the visual attention on the area related to teaching and learning by class phase, the novice teacher concentrates all the steps in a specific area, expert teachers showed an equal visual attention to meaningful areas of teaching and learning activities. Third, there was a statistically significant difference in activities 1-1, 1-2, 2-1, and 2-2 when the participants' decentralized attention ability. Expert teachers frequently checked students' understanding and interests. There was a lot of interaction with students. It is also shown through the decentralized attention ability that the novice teachers concentrate on a specific area, and the expert teachers have a high degree of decentralized attention ability and visual attention evenly.

Development and Usage of Interactive Digital Linear Algebra Textbook (대화형 수학 디지털교과서 개발과 활용 사례 연구 - 선형대수학을 중심으로-)

  • Lee, Sang-Gu;Lee, Jae Hwa;Park, Kyung-Eun
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • The 4th industrial revolution is coming. In order to prepare for the new learning environment with it, we may need digital mathematics textbooks that fully utilize all possible technologies. So various attempts have been made in elementary and middle school mathematics education. However, despite the importance of higher mathematics, we haven't seen a best possible math digital textbooks yet in Korea. In this paper, we introduce our new model of interactive math digital textbook about Linear Algebra/ Calculus/ Differential Equations/ Statistics/ Engineering Math. Especially, this manuscript focuses on our experience of using digital contents and interactive labs for developing a new model for linear algebra digital textbook. We introduce our works on linear algebra digital textbooks which include pdf e-book, web contents, video clips of lectures, interactive lab. Using this linear algebra digital textbook, students can freely use any mobile devices to access diverse learning materials, lessons, and hands-on exercises without any limitations. Also, times saved in the computation, coding, and typing process can be used to have more discussions for deeper understanding of mathematical concepts. This type of linear algebra digital textbook, which contains all interactive free cyber-lab with codes and all lectures for each sections, can be considered as a new model for the next generation of math digital textbook.

Development of a Software Do-TRIZ for TRIZ Learning (트리즈 학습용 소프트웨어 Do-TRIZ 개발)

  • Kim, Eun-Gyung;Koo, Bon-Chul;Kim, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1883-1892
    • /
    • 2015
  • TRIZ is a theory of inventive problem solving. Recently the importance of creative capabilities is being emphasized and many successful cases using TRIZ are being introduced, therefore interest in TRIZ has been increasing. But TRIZ is not easy to learn alone compared to other creative thinking tools. Although it is effective to learn TRIZ through various cases, it is not easy for beginners to experience those many cases. Therefore, we developed a software called Do-TRIZ for TRIZ learning. Do-TRIZ provides descriptions and various examples of key concepts to make it easier for beginners to learn TRIZ. Also, the learners can add new cases continuously on Do-TRIZ. Especially, process-based problem solving modules have been implemented on Do-TRIZ, in order to make it possible to solve problems based on technical contradiction, physical contradiction, and IFR(Ideal Final Result). The learners can use the modules to solve their problems and to share the results. Also, we implemented Do-TRIZ Memo app that works with Do-TRIZ.

Cases of Discrepancy in High School Students' Achievement in Science Education Assessment: Focusing on Testing Tool in Affective Area (과학 교육 평가에서 나타나는 고등학생들의 성취 불일치 사례 - 정의적 영역 검사 도구를 중심으로 -)

  • Chung, Sue-Im;Shin, Dong-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.5
    • /
    • pp.891-909
    • /
    • 2017
  • This study analyzed some of the discrepancies in quantitative and qualitative data focusing on cognitive and affective achievement in science education. Academic and affective achievement score of 308 high school students were collected as quantitative data, and 33 students were interviewed for qualitative data. We examined the causes and types of discrepancies in terms of testing tools. As a result from quantitative data, there were a large number of students with a big difference between subjects in cognitive achievement, and constructs in affective achievement. More than 20% of the students did not match tendency between achievements in two areas. Through interviews, some examples such as intentional control of science learning for future study and careers, different responses by differences in perception between school science and science, appeared. A comparison of quantitative data by testing tool between qualitative ones and interviews showed conflicting result, where most students evaluated themselves differently from their own quantitative data. That is due to the students' interaction with the testing tools. Two types of discrepancy related to testing tool are found. One is 'the concept difference between the item developer and students,' the other is 'the difference between students' exposed response and their real mindset.' These are related to the ambiguity of the terms used in the tool and response bias due to various causes. Based on this study, an effort is required to elaborate the testing item that matches students' actual perception and to apply students' science learning experience to testing items.

Classification of Tablets Using a Handheld NIR/Visible-Light Spectrometer (휴대형 근적외선/가시광선 분광기를 이용한 의약품 분류기법)

  • Kim, Tae-Dong;Lee, Seung-hyun;Baik, Kyung-Jin;Jang, Byung-Jun;Jung, Kyeong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.628-635
    • /
    • 2017
  • It is important to prescribe and take medicines that are appropriate for symptoms, since medicines are closely related to human health and life. Moreover, it becomes more important to accurately classify genuine medicines with counterfeit, since the number of counterfeit increases worldwide. However, the number of high-quality experts who have enough experience to properly classify them is limited and there exists a need for the automatic technique to classify medicine tablets. In this paper, we propose a method to classify the tablets by using a handheld spectrometer which provides both Near Infra-Red (NIR) and visible light spectrums. We adopted Support Vector Machine(SVM) as a machine learning algorithm for tablet classification. As a result of the simulation, we could obtain the classification accuracy of 99.9 % on average by using both NIR and visible light spectrums. Also, we proposed a two-step SVM approach to discriminate the counterfeit tablets from the genuine ones. This method could improve both the accuracy and the processing time.

Pre-service Teachers' Development of Science Teacher Identity via Planning, Enacting and Reflecting Inquiry-based Biology Instruction (예비교사들의 과학 교사 정체성 형성 -생명과학 탐구 수업 시연 및 반성 과정을 중심으로-)

  • An, Jieun;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.519-531
    • /
    • 2021
  • This study investigates the science teacher identity of pre-service science teachers (PSTs) in the context of a teaching practice course. Twenty-two PSTs who took the 'Biological Science Lab. for Inquiry Learning' course at the College of Education participated in this study. Artifacts created during the course were collected, and the teaching practices and reflections were recorded and transcribed. In addition, semi-structured interviews were conducted with nine PSTs, recorded, and transcribed. We found the science teacher identity was not well revealed at the beginning of the course. Authoritative discourse appeared in the early oral reflections of PSTs, indicating that the PSTs perceived oral reflection activities as 'evaluation activities for teaching practice'. This perception shows that pre-service teachers participate in teaching practice courses as students attending a university, performing tasks and receiving evaluations from instructors. After the middle of the course, discourses showing the science teacher identity of the PSTs were observed. In the oral reflection after the middle part, dialogic discourses often arose, showing that the PSTs perceive the oral reflection activities as a 'learning activity for professional development'. In addition, in the second half, discourse appeared to connect and interpret one's experience with the teacher's activity, indicating that the PSTs perceive themselves as teachers at this stage. In addition, the perception of experimental classes was expanded through the course. During the course, the practice of equalizing the authority of the participants, providing a role model for reflection, and experiencing various positions from multiple viewpoints in the class had a positive effect on the formation and continuation of the teacher identity. This study provides implications on the teacher education process for teacher identity formation in PSTs.

A Phenomenological Study of Elementary School Teachers' System Thinking-based Science Teaching Experiences (초등학교 교사의 시스템 사고를 적용한 과학 교수 경험에 대한 현상학적 연구)

  • Kim, Hyunguk;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.68-85
    • /
    • 2019
  • The purpose of this study was to understand science teaching experiences of elementary school teachers who taught the system thinking-based science inquiry class. The phenomenological methods were applied to analyze four elementary teachers' meaningful experiences. The four step methods of phenomenological experience research proposed by Giorgi (1985) and interview questions developed by Seidman (1998) and Schuman (1982) were used in order to collect qualitative data. The major findings of this study were as follows: First, teachers intentionally tried to ask divergent thinking questions which promoted the system thinking in classes. The teachers used divergent thinking questions to promote their students' thinking activities and to induce students' system thinking. In addition, the receptive mood created by teachers and interactive environments had a positive effect on promoting system thinking skills. Second, teachers remarked lack of teaching and learning materials and difficulties in selecting themes of their classes in order to teach the system thinking-based science inquiry class effectively. In addition, it was very difficult for teachers to evaluate the contents and processes of students' learning correctly because there were little evaluative tools and methods readily available. The findings indicated that there were some limitations in maximizing the effects of system thinking-based science inquiry instruction due to elementary students' inappropriate process skills of inquiry activities. Findings of this study revealed significant insights about elementary school teachers' experiences regarding the system thinking-based science class.

Exploring the Applicability of Protocol to Improve Curriculum Literacy for Special Education Pre-Teachers (예비특수교사들의 특수교육교육과정 문해력 향상을 위한 프로토콜 적용 가능성 탐색)

  • Lee, Okin;Park, Eun-Young
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.179-185
    • /
    • 2021
  • We performed to explore the applicability of protocol to improve the curriculum literacy for special education pre-teachers. For this, protocol of Park et al (2018), which can be used in the educational field, was partially modified and applied to enhance the special education curriculum expertise of pre-teachers. The literacy protocol of the special education curriculum was applied as Protocols 1 and 2, and Protocol 1 was focused on adaptation the 2015 special education curriculum and understanding literacy. Protocol 2 consisted of reorganizing the subject level centering on the five subjects presented in the special education curriculum, and establishing an integrated theme setting and reorganization plan. We applied the research design during a total of 15 weeks of special education curriculum subjects. The class format was flipped learning (e.g, pre-video lectures, theory lectures (E-Sheets), and learner-led activities (W-Sheets) for each topic was carried out. We found that pre-teachers' thought that the academic achievement and satisfaction of students with disabilities could be increased by adaptation the curriculum. Pre-teachers reported that the experience of reorganizing each subject/intersection helped improve their literacy but found it difficult.