• Title/Summary/Keyword: Existence theorem

Search Result 511, Processing Time 0.021 seconds

MULTIPLICITY RESULTS FOR THE ELLIPTIC SYSTEM USING THE MINIMAX THEOREM

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.511-526
    • /
    • 2008
  • In this paper, we consider an elliptic system of three equations using the minimax theorem. We prove the existence of two solutions for suitable forcing terms, under a condition on the linear part which prevents resonance with eigenvalues of the operator.

  • PDF

FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIVE FUZZY MAPPINGS

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.433-440
    • /
    • 2002
  • In this paper, we first prove the existence of fixed points for fuzzy mappings that satisfy a certain contractive condition. Also, we give a fixed point theorem for generalized contractive fuzzy mapping by using Caristi's by fixed point theorem.

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

EXISTENCE OF PERIODIC SOLUTION AND PERSISTENCE FOR A DELAYED PREDATOR-PREY SYSTEM WITH DIFFUSION AND IMPULSE

  • Shao, Yuanfu;Tang, Guoqiang
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.429-444
    • /
    • 2012
  • By using Mawhin continuation theorem and comparison theorem, the existence of periodic solution and persistence for a predator-prey system with diffusion and impulses are investigated in this paper. An example and simulation are given to show the effectiveness of the main results.

THE EXISTENCE OF PERIODIC SOLUTION OF A TWO-PATCHES PREDATOR-PREY DISPERSION DELAY MODELS WITH FUNCTIONAL RESPONSE

  • Zhang, Zhengqiu;Wang, Zhicheng
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.869-881
    • /
    • 2003
  • In this paper, a nonautonomous predator-prey dispersion delay models with functional response is studied. By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for above models is established.

GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL TYPE

  • Zhao, Lili;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.577-594
    • /
    • 2013
  • In this paper, we study the global stability and the existence of almost periodic solution of high-order Hopfield neural networks with distributed delays of neutral type. Some sufficient conditions are obtained for the existence, uniqueness and global exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. An example is given to show the effectiveness of the proposed method and results.

EXISTENCE AND MANN ITERATIVE METHODS OF POSITIVE SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Hao, Jinbiao;Kang, Shin Min
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.299-309
    • /
    • 2010
  • In this paper, we study the first order nonlinear neutral difference equation: $${\Delta}(x(n)+px(n-{\tau}))+f(n,x(n-c),x(n-d))=r(n),\;n{\geq}n_0$$. Using the Banach fixed point theorem, we prove the existence of bounded positive solutions of the equation, suggest Mann iterative schemes of bounded positive solutions, and discuss the error estimates between bounded positive solutions and sequences generated by Mann iterative schemes.

EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR BIHARMONIC EQUATION

  • Jin, Yinghua;Choi, Q-Heung;Wang, Xuechun
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.451-460
    • /
    • 2009
  • We consider the existence of solutions of a nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=f(x, u)$ in ${\Omega}$, where ${\Omega}$ is a bounded open set in $R^N$ with smooth boundary ${\partial}{\Omega}$. We obtain two new results by linking theorem.

  • PDF