• Title/Summary/Keyword: Existence of solution

Search Result 943, Processing Time 0.022 seconds

SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS IN SEVERAL SPACE DIMENSIONS

  • Baek, Jeong-Seon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1049-1064
    • /
    • 1997
  • We study the existence and uniqueness of nonnegative singular solution u(x,t) of the semilinear parabolic equation $$ u_t = \Delta u - a \cdot \nabla(u^q) = u^p, $$ defined in the whole space $R^N$ for t > 0, with initial data $M\delta(x)$, a Dirac mass, with M > 0. The exponents p,q are larger than 1 and the direction vector a is assumed to be constant. We here show that a unique singular solution exists for every M > 0 if and only if 1 < q < (N + 1)/(N - 1) and 1 < p < 1 + $(2q^*)$/(N + 1), where $q^* = max{q, (N + 1)/N}$. This result agrees with the earlier one for N = 1. In the proof of this result, we also show that a unique singular solution of a diffusion-convection equation without absorption, $$ u_t = \Delta u - a \cdot \nabla(u^q), $$ exists if and only if 1 < q < (N + 1)/(N - 1).

  • PDF

EXISTENCE OF POLYNOMIAL INTEGRATING FACTORS

  • Stallworth, Daniel T.;Roush, Fred W.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.185-196
    • /
    • 1988
  • We study existence of polynomial integrating factors and solutions F(x, y)=c of first order nonlinear differential equations. We characterize the homogeneous case, and give algorithms for finding existence of and a basis for polynomial solutions of linear difference and differential equations and rational solutions or linear differential equations with polynomial coefficients. We relate singularities to nature of the solution. Solution of differential equations in closed form to some degree might be called more an art than a science: The investigator can try a number of methods and for a number of classes of equations these methods always work. In particular integrating factors are tricky to find. An analogous but simpler situation exists for integrating inclosed form, where for instance there exists a criterion for when an exponential integral can be found in closed form. In this paper we make a beginning in several directions on these problems, for 2 variable ordinary differential equations. The case of exact differentials reduces immediately to quadrature. The next step is perhaps that of a polynomial integrating factor, our main study. Here we are able to provide necessary conditions based on related homogeneous equations which probably suffice to decide existence in most cases. As part of our investigations we provide complete algorithms for existence of and finding a basis for polynomial solutions of linear differential and difference equations with polynomial coefficients, also rational solutions for such differential equations. Our goal would be a method for decidability of whether any differential equation Mdx+Mdy=0 with polynomial M, N has algebraic solutions(or an undecidability proof). We reduce the question of all solutions algebraic to singularities but have not yet found a definite procedure to find their type. We begin with general results on the set of all polynomial solutions and integrating factors. Consider a differential equation Mdx+Ndy where M, N are nonreal polynomials in x, y with no common factor. When does there exist an integrating factor u which is (i) polynomial (ii) rational? In case (i) the solution F(x, y)=c will be a polynomial. We assume all functions here are complex analytic polynomial in some open set.

  • PDF

MIXED PROBLEM OF SEMILINEAR HYPERBOLIC SYSTEMS

  • EI-Sayed, Ahmed M.
    • Kyungpook Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.43-46
    • /
    • 1987
  • In this paper we consider the semilinear hyperbolic symmetric system of the first-order. The existence and uniqueness of the solution are proved, under certain conditions, some properties of the solution are investigated.

  • PDF

EXISTENCE OF SOLUTION OF DIFFERENTIAL EQUATION VIA FIXED POINT IN COMPLEX VALUED b-METRIC SPACES

  • Mebawondu, A.A.;Abass, H.A.;Aibinu, M.O.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.303-322
    • /
    • 2021
  • The concepts of new classes of mappings are introduced in the spaces which are more general space than the usual metric spaces. The existence and uniqueness of common fixed points and fixed point results are established in the setting of complete complex valued b-metric spaces. An illustration is given by establishing the existence of solution of periodic differential equations in the framework of a complete complex valued b-metric spaces.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

  • Jeong, Hyo Suk;Kim, Namkwon;Kwak, Minkyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.753-760
    • /
    • 2013
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a bounded Lipschitz do-main under Dirichlet boundary condition. We present by a very simple argument that a strong solution exists globally when the product of $L^2$ norms of the initial velocity and the gradient of the initial velocity and $L^{p,2}$, $p{\geq}4$ norm of the forcing function are small enough. Our condition is scale invariant and implies many typical known global existence results for small initial data including the sharp dependence of the bound on the volumn of the domain and viscosity. We also present a similar result in the whole domain with slightly stronger condition for the forcing.

ON THE EXISTENCE AND BEHAVIOR OF SOLUTIONS FOR PERTURBED NONLINEAR DIFFERENTIAL EQUATIONS

  • Jin Gyo Jeong;Ki Yeon Shin
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.655-664
    • /
    • 1997
  • The existence and behavior of a bounded solution for a perturbed nonlinear differential equation of the type $$ (DE) x'(t) + Ax(t) \ni G(x(t)), t \in [0, \infty) $$ is considered. First, we consider the existence of a bounded solution with more simple assumptions using the concept of "the method of lines". Then we devote to study its behavior using recent results of almost non-expansive curve which is developed by Djafari Rouhani.i Rouhani.

  • PDF

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.