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MULTIPLE POSITIVE SOLUTIONS FOR PSEUDO-LAPLACIAN
EQUATION WITH CRITICAL EXPONENTS

KwoN Wook KiMm

ABSTRACT. This paper is concerned with the existence of mutiple positive solution
of
—fpu= Q(x)|u|p* 2yt A%y, zeQue Wé‘p(Q)

with Dirichlet boundary condition.

1. Introduction

We are concerned with the existence of multiple positive solutions of the following
quasi-linear elliptic equation

— ppu=Q(@)ulf "2u+ AMuP%u on Q, ue WyP(Q)
v>0 in Q (1)
u=0 on 0N

where Ap is called p-Laplace operator,defined by A, u = (| v ulP~2 v u), Q is
a smooth bounded domain of RN(N > 4),N > p? > 1,p* = -];’,’—J_VP,)\ € (0,M1)
(A1 is the first eigenvalue of — A, with zero Dirichlet boundary condition) and
Q(z) € C() satisfies the following condition:

Condition(Q). Q(z) > 0 in Q and there exist points a*,a2,--- ,a* € Q such that
Q(a?) are strict local mazimums satisfying

Q) =Qum = MazQ(z) > 0,
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; O(lz—d’P) if N =p%,
Q@ -qu)={ o5 T
o(le—d?|P) fN>p*>1
for z neara?, j=1,2,..k.
Our main result in this paper is the following:

Main thereom. Suppose that condition (Q) holds. Then there exists a positive
number Ao € (0,A1) such that, for A € (0, o], problem(1) has at least k positive
solutions.

The existence of at least one positive solution of (1) has been established for the
special case that Q(z) is a constant by [3] and for Q(z) satisfying condition(Q) at
a point a € €, by Escobar [7] for p = 2. This aim of this paper is to show the
effect of the shape of the graph of Q(z) on the existence and multiplicity of positive

solutions. Our solutions are obtained as local minimum points of the functional

I(u) = }, / | vu|P—A|u|P—Z-}; / Q@)ul, @)

for A € (0,A1), constrained to suitably constructed closed subsets of W, (). Our
positive solutions will correspond to critical values in (0, SN/P/N QS\J/}J—p )/p ). Our
results seem to suggest that the geometry of the graph of QQ(z) has a similar effect
to the geometry of ), on the existence and multiplicity of both kinds of solutions.

2. Preliminary Results

Let .|| denote the norm of W, (), |ul| = [ |vulP for all u € WP (). Here all
integrals are Lebesgue integrals over {2 unless otherwise stated. Let g : Wy P(2) —

RY be defined by

[ alul?” o
Sl

For r > 0,y € RV, set B.(y) = {z € RM,|z — y| < r} and let B.(y),S-(v)
denote the closure and the boundary of B,(y) respectively. By condition(Q) we
may choose [ > 0 small enough so that By (a’) C Q2 are disjoint and Q(z) < Q(a’)
for x € By(a?),z #a%,j =1,2,--- , k. For A > 0, define

g(u) =

Ty = {ue WyP(Q):u#0,< Ij(u),u >=0} (4)
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where I} (u) denotes the Frechet derivative of I(u). For A >0 and j =1,2,--- ,k,
define

Og\ = {u € Xy g(u) € Bl(aj)},
Ul = {u€Xy:gu) € Si(a?)}. (5)
None of Oi, U f\ are empty, as can be easily verified. Define

m} = inf{I)(u):u € 0}},
m), = inf{Ix(u) : u € U{}. (6)

:inf{/RN |7 ulP:ue Wol”’(RN),/RN lulP” = 1}. (7)

In the following Lemmas, we establish estimates on mg\, mi, which are crucial to
our construction of P.S.sequences in the subsets Oi.

Lemma 1. For j=1,--- ,k and A > 0, we have

. S
my < —x=- ®)
NQ,7

Proof. Let zo € RY,e > 0 and

Ue zo = CneN-P)/P
(eP 4 |z — zo|P/(P-D)(N=-p)/P

with
N(M)p—l =t
(=)

It is easy to verify that U, ,, satisfies

Cn =

—ApuzQMluV’*_zu in RN.

Furthermore, it is well known(3] that the infimum in (7) is achieved by the functions
Ue,z0/1Ue zo 17 L( ryvy Let 0 <p < L,p fixed. Define a radial nonnegative function
¢ € C§(RM) by
1 for z € B,(0)
¢(x) = { ’
0 for z & By,(0).
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Set u, 45 = U, 4s¢(z — a?) and we shall simply write u. for u. ,; when there is no
confusion. The following estimates can be established from similar estimates in [3]:
Ase — 0,

[ 190 = Ky + 06D, Ky = 19 Vsolfay ©)

[ 1l = Ko+ O™, Ka = V0l oy (10)

([ leP)% = 5,7 + 0¥, K™ = Ul 1)
[1uar - { O ey v 570 )

where K3 is a positive constant. For ¢ > 0, let t. > 0 be selected such that
ve = t-u. € Ly. That is
tp'—p — f(l Y uslp - )“uelp)
‘ JQ@)uclP
Notice that v. € Oi. This follows easily from the symmetry of u. about a’,
which implies that g(v.) € Bj(a’). Hence (8) will follow if we show that

(13)

Sﬂ

—_——, 14
NQ%IV_”)/” ( )

sup I (tue) <
£>0
To establish (16) we set
tP P .
ht) == (7l = AueP) - 2 [ Qe
p p
B'(t) > 0 for t € (0,t.),R'(t) <O for t > ¢, and h'(t.) = 0. Therefore,

sup I (tue) = In(teue)
t>0

=£ P __ P _tfp‘ p”
: /(|vus| Auel) - 2 / Q()ue

—ot - ) [0 - e

=£/|vu|ﬁ—x|u P
N Q & [
1
N[(

K1+ 0(eN7P)) — Kan(e)N]t.?,
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where )
glp”=p) if N>p?>1,
ne) =19 wip
eP"~Plloge| if N =p?

Using condition((}) we have

@ = [Quiu+ [@@) - Qulucl”

{QMK2+O (eN)+o0(eP) I N >p?>1, 15)
QuKs+O0(€N) +0(eP) if N =p2
Thus
(K O(eN-P) — AK3n(e) =
tP = [ T O T ol ] (16)
where

o(e?) if N>p?>1,
a(e) = . 5
O(eP) if N =p*
Using (16) and || v Uy ollL,,(Q) SIU1,0ll" ,+ ), We have

N N
K.? 1 SF
su;o) I (tue) = ) 1 poa B(e) = N ﬁ(‘f),
> NQ) (Kg)'» QM
where
- 1——%%)\57’4—0(67’) if N>p?>1,
5‘ =
1 —p%As”l loge| + O(eP) if N = p?.

It then follows that B(e) < 1 for sufficiently small €, which implies (16) and Lemma
1 follows.

Lemma 2. Assume that condition (Q) holds. Then there exist € > 0 and A, such
that N
Sr
N—p + &,
NQMP

PO
\%

for i =1,2,...k and X € (0, \).

Proof. suppose to the contrary that we could find a sequence A, as n — oo, such
that m} — ¢ < SV /?IN Qg\ffv—p )P, Consequently, there exists u, € U ,{n such that

I/\n (un) — C,

[ 19 unp=rnfun = [a@up. (17)
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It then follows easily that {u,} is bounded in W, P(Q) and A, [ |unlP — 0 as
n — oo. By Hélder’s and Sobolev’s inequalities we can fix v > 0 such that

/' vu"|p’/Q(ﬂ”)lunv" >v>0

for all n = 1,2, .- -. Therefore,we may choose t, > 0 so that v, = t,u, satisfies

[190aP = [ Qusal”,

b= [fQ(HC)

and

TS |un|p]
J QumlunlP

are bounded. Suppose t, — ty as n — oo. Then tp < 1 since Q(z) < Qu and
An [|unP =0 as n — oo. In fact, to = 1. This follows easily from

¥
5 lim —/|vvn|”— lim —/lvunlp

NQ(N p)/ n—oo N

= Jm iy (19wl = AfunP)
= lim_ tP I, (un) = the
N
<t (SNP p-
NQM P)/P

The inequalities above also show that
(18)
Set wy, = vn/([ [Un|P )Y/P". Tt is easy to verify that

/lvwn[”—as as mn— 00.

That is,{w,} is a minimizing sequence for the problem

S:inf(/(vulpzuewg"’(a),/mw‘ -1).
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We now use a result of P.L.Lions[9] to conclude that we can find a point zo €
and a subsequence, still denoted by {wp,}, such that

lim | vlwaf? = v(xo) (19)

n—oo )

for any v € C(f2). In particular, we have

Jzilunl? [ @iwa|P

g {un) = e S = e — (o)

as n — 0o, and since g(un) € Si(a’), zo € Si(a?). Using (18) and (19) we also have

Jm [ Q@ = tim / Q@)loal”

.1‘0)
QM n—-)oo

- fiver
Q(z0) SN

N-p)

QM QMP

n—o0

lim Iy, (up) = ani_}n;o Q()|unl?

_ Q(zo) SN S5
- 7z < NQE\J}/—p)/p’

QM NQMP

contradicting (18). Hence Lemma 2 follows.

Lemma 3. Assume that condition (Q) holds and A € (0, A1). Then any sequence
{un} C Xy satisfying
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is relatively compact in Wy'P().

Proof. Since A € (0, A1), it is easy to show that {u,} is bounded in W, () and
therefore we may assume that for some ug € W,P(Q),

Uy, — up  weakly in WyP(Q),

Up — Ug a.e. In Q,

/ | 7 uol? — Aluol? = / Q@)luol?,

I(up) = %/Q(m)|uo|”* >0 if wg#0.

Let wy, = u,, — ug. By Brezis-Lieb Lemmal(10], we have

[ @il = [@@iuaP” + [ @@lunp” +of0),

[19up = [19up+ [ 19w +o1)

If ||wy || — 0,we are done, so assume ||wy| — L > 0. It follows from

[19wal = [190 = [ 19 P +ot1)

= [1ual + [ Q@lunl” [ 19 w0l +0(1)
2 [t + [ Q@unl” + [ Q@uol” - [ 17 0P + (1)
- / Q@)wnl”” +o(1),

that we can choose #,, > 0 so that

/ | trwnP = / Outltnwnl?.

In fact
2 [Q@)hwnl” +o(1)
fQlenV)* ’




MULTIPLE POSITIVE SOLUTIONS FOR PSEUDO-LAPLACIAN EQUATION 41
and t, — tg < 1. Therefore,

1 t
— 1 P> 0y P
Nnggo/lvwnl ENJggo/lvwnl
1
— — N P
‘NJ‘_?éo/Wt"w"'
S%
N—-E7

>
NQf

where the last inequality follows from the definition of §. We then have

N

. L

A v enl” 2 —=,
Qu

and therefore

lim Iy(un) = In{uo) + li_>m I (wy)

n—00

1
=IA(uo)+N,}gr;o/lvwnlp

S%
ZIA(U0)+ N-p
NQM”
S
- M,
NQ,\f

contradicting the hypothesis. Therefore ||w,| — L > 0 is impossible, and Lemma
3 follows.

Lemma 4. Assume that condition (Q) holds. Then there exists a Ag € (0, A1) and
a sequence {ui} C 0{\, for each 7 =1,2,--- | k,satisfying u, > 0,

In(ud) — md, (20)

I (u}) = 0, (21)
as n — oo, for A € (0, Ao].

Proof. We first notice that for A < A; there is a positive constant § = (A — A)
such that [[ul[per(q) > d > 0 for all u € Of‘. Therefore,Oi = 0{\ U U{ and U{ is
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the boundary of O} for A < \; and each j = 1,2,--- ,k. Using Lemma 1 and
Lemma 2 we see that there exists A\g € (0, A1) such that

m} < 1, (22)
for A € (0,X],5 =1,2,--- , k. It follows that
m} = inf{I) () : u € O}}. (23)

Fix X € (0, Xo] and let {ul} C Oi be a minimizing sequence for (22). By replacing
ul, with |ul|, if necessary, we may assume that u/, > 0. By applying Ekeland’s
variational principle[6] we construct a minimizing sequence {v,} C Oi, for each
j=1,2,--- , k, with the properties

(a) Ia(vn) < In(u) < + ~,

(b)  on~ddl < =, (24)

S|=

1 .
(c) I)\(vn)<I>\(w)+E||w—vn|| foreach w#v, in O3.

Using (22) we may assume that v, € Oi for sufficiently large n. We may now
employ the argument in [6] to construct,for each v,, an €, > 0 and a functional
t™(w) defined for w € Wy P(Q), |w|| < &, such that t*(w)(v, — w) € Oi, and

_ Pl v v = AuaP~%) - p* [ Q@)onl” 20
JT9 0alP = Xoml? = " = 1) ] Q@)lon

Choose 0 < 6 < &,. Let 0 # u € WyP(Q) and let ws; = ”%—‘n. Fix n and let
25 = t™(ws)(vn — ws). Since z5 € Oi by the properties of t™(ws),

((£")'(0),v) (25)

1
In(z5) — In(vn) 2 —;IIZJ — vn|

follows from (24). The mean value theorem then gives

1
(I3(vn), 25 = va) + o(llzs — vall) 2 —~llzs = vnl-
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Hence
(I3 (vn), (vn —ws) + (t"(ws) — 1)(vn —ws) —vn) 2 -;1; 25 = vnll +o(ll2s — vall),
which implies that

— (I3 (vn), ws) + (" (ws) — 1)(I3(vn), vn — ws)

1
>~ 25 = val +ofllz5 = val)). (26)

Since t™(ws)(vn, — ws) € Oi, (I3 (25), t™(ws) (vn — ws)) = 0. Thus it follows from
(26) that

U

[lul

% (I)(25), t™ (ws ) (un —~ ws))

+ (£ (ws) — V(I3 (vn) = Ix(25), vn — ws)

1
2 _E“z& — vnll + o(llzs = vall)-

_6<I$\(Un), ) +

Hence

1|lzs —vnll = olllzs — vnll)
n s T 3
(t™(w

) = 1) (1 ) — 1 (25, 10— ). (27)

. v _—
(IA( 'n), ” “>
+

But ||zs — vn|| <6 + [t™(ws) — 1|C,

o (08 =1

§—0 1)

<Ey Ol <c

for some constant C' > 0, independent of §, as can be easily verified from (25). For
fixed n, letting § — 0 in (27), we obtain

(T4 (vn), ”—Zﬁ

which implies that I} (v,) — 0, as n — oo, and by (24)(b) we conclude that
I(ul)—0 for Xe&(0,\). This completes the proof of Lemma 4.

y <¢
n

3. Proof of Main Theorem
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By combining Lemma 3 and Lemma 4, we see that there exists Ag > 0 such

that for A € (0, Xo],7 = 1,2, , k, we have a minimizing sequence {ul,} C Oi such
that

it

ul, 20,

I(u}) - m},

L) -0,

wl — ! strongly in  WyP(Q).

then follows that w/ # 0 is a weak solution of (1) and v/ > 0. By standard

regularity argument and the Vazquez maximum principle[11], we obtain u?(z) > 0

n

Q, and since g(u’) € Bi(a’) and Bj(a’) are disjoint for j = 1,2,--- ,k. we

conclude that u?,j = 1,--- | k, are distinct positive solutions of (1). This completes

the proof of main Theorem.

10.

11.
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