• Title/Summary/Keyword: Existence and uniqueness

Search Result 380, Processing Time 0.022 seconds

MOMENT ESTIMATE AND EXISTENCE FOR THE SOLUTION OF NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATION

  • Chen, Huabin;Wan, Qunjia
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the existence and uniqueness for the global solution of neutral stochastic functional differential equation is investigated under the locally Lipschitz condition and the contractive condition. The implicit iterative methodology and the Lyapunov-Razumikhin theorem are used. The stability analysis for such equations is also applied. One numerical example is provided to illustrate the effectiveness of the theoretical results obtained.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.773-785
    • /
    • 2012
  • In this paper, we establish sufficient conditions for the existence and uniqueness of solutions to a general class of three-point boundary value problems for a coupled system of nonlinear fractional differential equations. The differential operator is taken in the Caputo fractional derivatives. By using Green's function, we transform the derivative systems into equivalent integral systems. The existence is based on Schauder fixed point theorem and contraction mapping principle. Finally, some examples are given to show the applicability of our results.

NEGATIVELY BOUNDED SOLUTIONS FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

  • FANG ZHONG BO;KWAK, MIN-KYU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.829-836
    • /
    • 2005
  • In this note, we introduce a new proof of the unique-ness and existence of a negatively bounded solution for a parabolic partial differential equation. The uniqueness in particular implies the finiteness of the Fourier spanning dimension of the global attractor and the existence allows a construction of an inertial manifold.

REMARKS ON THE EXISTENCE OF AN INERTIAL MANIFOLD

  • Kwak, Minkyu;Sun, Xiuxiu
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1261-1277
    • /
    • 2021
  • An inertial manifold is often constructed as a graph of a function from low Fourier modes to high ones and one used to consider backward bounded (in time) solutions for that purpose. We here show that the proof of the uniqueness of such solutions is crucial in the existence theory of inertial manifolds. Avoiding contraction principle, we mainly apply the Arzela-Ascoli theorem and Laplace transform to prove their existence and uniqueness respectively. A non-self adjoint example is included, which is related to a differential system arising after Kwak transform for Navier-Stokes equations.

Existence and Uniqueness of Solutions for the Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory

  • Kwun, Young-Chel;Park, Jong-Seo;Kim, Seon-Yu;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.288-292
    • /
    • 2006
  • Many authors have studied several concepts of fuzzy systems. Balasubramaniam and Muralisankar (2004) proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. Recently, Park, Park and Kwun (2006) find the sufficient condition of nonlocal controllability for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. In this paper, we study the existence and uniqueness of solutions for the semilinear fuzzy integrodifferential equations with nonlocal condition and forcing term with memory in $E_{N}$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_{N}$.

EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A CLASS OF p-LAPLACIAN EQUATIONS

  • Kim, Yong-In
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • The existence and uniqueness of T-periodic solutions for the following p-Laplacian equations: $$({\phi}_p(x^{\prime}))^{\prime}+{\alpha}(t)x^{\prime}+g(t,x)=e(t),\;x(0)=x(T),x^{\prime}(0)=x^{\prime}(T)$$ are investigated, where ${\phi}_p(u)={\mid}u{\mid}^{p-2}u$ with $p$ > 1 and ${\alpha}{\in}C^1$, $e{\in}C$ are T-periodic and $g$ is continuous and T-periodic in $t$. By using coincidence degree theory, some existence and uniqueness results are obtained.

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).