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EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS
FOR A CLASS OF p-LAPLACIAN EQUATIONS

Yong-In Kim

Abstract. The existence and uniqueness of T -periodic solutions for the following
p-Laplacian equations:

(φp(x′))′ + α(t)x′ + g(t, x) = e(t), x(0) = x(T ), x′(0) = x′(T )

are investigated, where φp(u) = |u|p−2u with p > 1 and α ∈ C1, e ∈ C are T -
periodic and g is continuous and T -periodic in t. By using coincidence degree
theory, some existence and uniqueness results are obtained.

1. Introduction

We consider the solvability and uniqueness of the following periodic boundary
value problem:

(1) (φp(x′))′ + α(t)x′ + g(t, x) = e(t)

(2) x(0) = x(T ), x′(0) = x′(T ),

where φp(u) = |u|p−2u with p > 1 and α ∈ C1, e ∈ C are T -periodic and g is
continuous and T -periodic in t. Moreover, we assume that

∫ T
0 e(t)dt = 0.

By a solution of the problem (1)-(2) we mean a function x ∈ C1([0, T ],R) with
φp(x′) absolutely continuous, which satisfies (1)-(2) a.e. on [0, T ].

Note that if p = 2, (1) reduces to the following second order forced Rayleigh
equation:

(3) x′′ + α(t)x′ + g(t, x) = e(t).

The existence and uniqueness of periodic solutions of (1) and (3) when α(t) = C

with C a constant, have been an important research focus for the study of dynamic
behaviors of nonlinear second order differential equations. See, for example, research
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papers [1-9] and the references therein. Recently, Zhang and Li[8] have obtained the
following results:

Consider the following p-Laplacian equation:

(4) (φp(x′))′ + Cx′ + g(t, x) = e(t),

where C is a constant and ∫ T

0
e(t)dt = 0.

Theorem A. Assume that there exist K > 0 and M > 0 such that
(A1) (g(t, u1)− g(t, u2))(u1 − u2) < 0 for all u1, u2, t ∈ R with u1 6= u2;
(A2) xg(t, x) < 0 for all x 6= 0 and t ∈ R;
(A3) 22−pMT p < 1 and g(t, x) ≥ −M |x|p−1 −K for all x ≥ 0 and t ∈ R.
Then (4) has a unique T -periodic solution.

Theorem B. Assume that there exist K > 0 and M > 0 such that
(A′1) (g(t, u1)− g(t, u2))(u1 − u2) < 0 for all u1, u2, t ∈ R with u1 6= u2;
(A′2) xg(t, x) < 0 for all x 6= 0 and t ∈ R;
(A′3) 22−pMT p < 1 and g(t, x) ≤ M |x|p−1 + K for all x ≤ 0 and t ∈ R.
Then (4) has a unique T -periodic solution.

More recently, Wang [7] has improved Theorem A and Theorem B, and has
obtained the following results:

Theorem C. Assume that there exists d ≥ 0 such that
(B1) [g(t, u1)− g(t, u2)](u1 − u2) < 0 ∀u1, u2, with u1 6= u2, and t ∈ R.

(B2) xg(t, x) < 0 ∀ |x| > d and t ∈ R.

Then (4) has a unique T -periodic solution.

In this paper, we discuss the existence and uniqueness of T -periodic solutions of
the periodic boundary value problem (1)-(2) under some general conditions. The
main results of this paper are the following:

Theorem 1. Consider problem (1)-(2). Assume that
(H1) there exist constants d > 0 such that for |x| > d, xg(t, x) < −x2 ∀ t ∈ [0, T ];
(H2) α′(t) ≥ −1 ∀ t ∈ [0, T ].
Then the problem (1)-(2) has at least one T -periodic solution.

Theorem 2. Assume that (H1) and (H2) in Theorem 1 and (B1) in Theorem C
hold.

Then (1)-(2) has a unique T -periodic solution.
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Remark. In [10], the authors considered a general term f(t, x′) in (1) instead of
a specific term α(t)x′ as in this paper. However, the assumptions (H1) and (H2) of
Theorem 1 in this paper do not follow from the assumptions of the Theorem 1 in
[10] and hence Theorem 1 in this paper is different from and independent of that in
[10].

2. Proofs of Theorems.

We first introduce some well-known results for p-Laplacian-like operators, which
will be used in the proof of Theorem 1.

Let X = C1
T [0, T ] be the space of all T -periodic C1-functions, i.e.,

X = C1
T [0, T ] =

{
x(t) ∈ C1([0, T ], R) : x(0) = x(T ), x′(0) = x′(T )

}
.

The norm of a function x ∈ C1
T [0, T ] is defined by

‖x‖ := |x|∞ + |x′|∞,

where |x|∞ := maxt∈[0,T ] |x(t)| and |x′|∞ := maxt∈[0,T ] |x′(t)|.
Lemma 1 ([5, Theorem 3.1]). Consider the following problem

(5) (φp(u′))′ = h(t, u, u′), u(0) = u(T ), u′(0) = u′(T ),

where φp(u) = |u|p−2u with p > 1 and h is a Caratheodory function and is T -periodic
in t. Let Ωr = {x ∈ C1

T [0, T ] : ‖x‖ < r} for some r > 0. Suppose that the following
conditions hold:

(i)For each λ ∈ (0, 1), the problem

(6) (φp(u′))′ = λh(t, u, u′), u ∈ C1
T [0, T ]

has no solution on ∂Ωr.

(ii)The function H(a) defined by

H(a) :=
1
T

∫ T

0
h(t, a, 0)dt

satisfies H(−r)H(r) < 0.

Then the problem (5) has at least one solution in Ωr.

Proof of Theorem 1. Let h(t, x, x′) = e(t)− α(t)x′ − g(t, x). Then (6) reduces to

(7) (φp(x′))′ + λα(t)x′ + λg(t, x) = λe(t), λ ∈ (0, 1).
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We first show that the set of all possible T -periodic solutions of (7) is bounded. Let
x(t) be an arbitrary T -periodic solution of (7). Integrating both sides of (7) from
t = 0 to t = T , and using (2) and integration by parts, we obtain

∫ T

0
[g(t, x(t))− α′(t)x(t)]dt = 0.

Therefore, there exists s ∈ [0, T ] such that g(s, x(s))− α′(s)x(s) = 0, which implies
that x(s)g(s, x(s)) = α′(s)x2(s). Since α′(s) ≥ −1, we obtain x(s)g(s, x(s)) ≥
−x2(s). Now (H1) implies that |x(s)| < d. Then for t ∈ [0, T ], we have

|x(t)| =
∣∣∣∣x(s) +

∫ t

s
x′(τ)dτ

∣∣∣∣ ≤ d +
∫ T

0
|x′(t)|dt.

Thus we obtain

(8) |x|∞ = max
t∈[0,T ]

|x(t)| ≤ d + |x′|1,

where |x′|1 :=
∫ T
0 |x′(t)|dt.

To show that |x′| is bounded for all x ∈ C1
T [0, T ], let I1 = {t ∈ [0, T ] : |x(t)| ≤ d}

and I2 = {t ∈ [0, T ] : |x(t)| > d}. Multiplying both sides of (7) by x(t) and
integrating from t = 0 to t = T , and noting that g(t, x(t))x(t) − 1

2α′(t)x2(t) ≤
−1

2x2(t) < 0 for t ∈ I2 from (H1) and (H2), we obtain

∫ T
0 |x′(t)|pdt = − ∫ T

0 (φp(x′(t)))′x(t)dt

= λ
∫ T
0

[
g(t, x(t))x(t)− 1

2α′(t)x2(t)
]
dt− λ

∫ T
0 e(t)x(t)dt

= λ
∫
I1

[
g(t, x(t))x(t)− 1

2α′(t)x(t)
]
dt

+λ
∫
I2

[
g(t, x(t))x(t)− 1

2α′(t)x2(t)
]
dt− λ

∫ T
0 e(t)x(t)dt

≤ λ
∫
I1

[
g(t, x(t))x(t)− 1

2α′(t)x2(t)
]
dt− λ

∫ T
0 e(t)x(t)dt

≤ ∫
I1

[|g(t, x(t))x(t)|+ 1
2 |α′(t)|x2(t)

]
dt +

∫ T
0 |e(t)x(t)|dt

≤ GdTd + 1
2 |α′|∞Td2 + |e|∞|x|1

:= M1 + |e|∞|x|1,

where Gd := maxt∈[0,T ],|x|≤d |g(t, x)| and M1 := GdTd + 1
2 |α′|∞Td2. Hence we have

(9) |x′|pp ≤ M1 + |e|∞|x|1,
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where |x′|p :=
(∫ T

0 |x′(t)|pdt
)1/p

. But from (8), we have

(10) |x|1 =
∫ T

0
|x(t)|dt ≤

∫ T

0

[
d + |x′|1

]
dt = dT + T |x′|1.

Substituting (10) into (9), we obtain

(11) |x′|pp ≤ M1 + |e|∞dT + |e|∞T |x′|1.
By Hölder’s inequality,

(12) |x′|1 =
∫ T

0
|x′(t)|dt ≤

(∫ T

0
|x′(t)|pdt

) 1
p

(∫ T

0
1qdt

) 1
q

= T
1
q |x′|p,

where q = p
p−1 > 1 is the exponent conjugate to p. Substituting (11) into (12), we

obtain

(13) |x′|p1 ≤ T p/qM1 + |e|∞dT p + |e|∞T p|x′|1.
Since p > 1, we see from (13) that there exists a positive constant M2 such that
|x′|1 ≤ M2. This, together with (8), implies that |x|∞ ≤ M3, where M3 := d + M2.

Next we show that |x′(t)| is bounded. Since x(0) = x(T ), there exists t1 ∈ (0, T ),
such that x′(t1) = 0. It follows from (7) that for t ∈ [0, T ],

|φp(x′(t))| =
∣∣∣
∫ t
t1

(φp(x′(s))′ds
∣∣∣

= λ
∣∣∣
∫ t
t1

[α(s)x′(s) + g(s, x(s))− e(s)] ds
∣∣∣

≤ ∫ T
0 |α(t)x′(t)|dt +

∫ T
0 |g(t, x(t))|dt +

∫ T
0 |e(t)|dt

≤ |α|∞|x′|1 + GMT + |e|∞T

≤ |α|∞M2 + GMT + |e|∞T,

where GM = max{|g(t, x)| : t ∈ [0, T ], |x| ≤ M3}.
Since |φp(x′(t))| = |x′(t)|p−1, letting M4 := [|α|∞M2 + GMT + |e|∞T ]1/(p−1),

then we have

|x′|∞ = max
t∈[0, T ]

|x′(t)| ≤ M4.

Finally let M = M3 + M4 + 1. Then we have ‖x‖ = |x|∞ + |x′|∞ < M. Thus
we have shown that the set of all T -periodic solutions x(t) of (7) is bounded, i.e.,
‖x(t)‖ < M .

Now set ΩM = {x ∈ X : ‖x‖ = |x|∞ + |x′|∞ < M}. Then the equation (7) has
no solution on ∂ΩM for λ ∈ (0, 1), which implies that the condition (i) of Lemma 1
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is satisfied. Also, by the definition of H(a), we see that

H(a) =
1
T

∫ T

0
h(t, a, 0)dt =

1
T

∫ T

0
[e(t)− g(t, a)] dt = − 1

T

∫ T

0
g(t, a)dt.

Moreover, for x = ±M ∈ R, we have x ∈ ∂ΩM and since M > d, from the assump-
tion (H1), we see that H(−M)H(M) < 0. This implies that the condition (ii) of
Lemma 1 is satisfied. Now Lemma 1 implies that problem (1)-(2) has at least one
solution in ΩM . ¤

Proof of Theorem 2. We need only to show that under the additional condition
(B1), the problem (1)-(2) has at most one solution.

Suppose on the contrary that (1)-(2) has two distinct solutions x(t) and y(t).
Let u(t) = x(t) − y(t). Since u ∈ C1

T [0, T ], there exists a t∗ ∈ [0, T ] such that
u(t∗) = maxt∈[0,T ] u(t). Suppose u(t∗) > 0. Then u′(t∗) = x′(t∗) − y′(t∗) = 0 and
u′′(t∗) = x′′(t∗) − y′′(t∗) ≤ 0, a.e.. Since x(t) and y(t) are solutions of (1) and (2),
we get from (1) and the above equality that

(14) 0 = (p− 1)
[|x′(t∗)|p−2u′′(t∗)

]
+ [g(t∗, x(t∗))− g(t∗, y(t∗))] < 0, a.e.

because the first part of the right side of (14) is non-positive a.e. and the second
part of the right side (14) is negative by (B1). This contraction shows that x(t) ≤
y(t) ∀ t ∈ [0, T ]. Exchanging the role of x and y, we can show that x(t) ≥ y(t) ∀ t ∈
[0, T ]. This shows that x(t) ≡ y(t). Hence (1)-(2) has a unique solution. ¤
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