EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR A CLASS OF p-LAPLACIAN EQUATIONS

Yong-In Kim

Abstract

The existence and uniqueness of T-periodic solutions for the following p-Laplacian equations: $$
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}+\alpha(t) x^{\prime}+g(t, x)=e(t), \quad x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)
$$ are investigated, where $\phi_{p}(u)=|u|^{p-2} u$ with $p>1$ and $\alpha \in C^{1}, e \in C$ are T periodic and g is continuous and T-periodic in t. By using coincidence degree theory, some existence and uniqueness results are obtained.

1. Introduction

We consider the solvability and uniqueness of the following periodic boundary value problem:

$$
\begin{gather*}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}+\alpha(t) x^{\prime}+g(t, x)=e(t) \tag{1}\\
x(0)=x(T), \quad x^{\prime}(0)=x^{\prime}(T), \tag{2}
\end{gather*}
$$

where $\phi_{p}(u)=|u|^{p-2} u$ with $p>1$ and $\alpha \in C^{1}, e \in C$ are T-periodic and g is continuous and T-periodic in t. Moreover, we assume that $\int_{0}^{T} e(t) d t=0$.

By a solution of the problem (1)-(2) we mean a function $x \in C^{1}([0, T], \mathbb{R})$ with $\phi_{p}\left(x^{\prime}\right)$ absolutely continuous, which satisfies (1)-(2) a.e. on $[0, T]$.

Note that if $p=2$,(1) reduces to the following second order forced Rayleigh equation:

$$
\begin{equation*}
x^{\prime \prime}+\alpha(t) x^{\prime}+g(t, x)=e(t) . \tag{3}
\end{equation*}
$$

The existence and uniqueness of periodic solutions of (1) and (3) when $\alpha(t)=C$ with C a constant, have been an important research focus for the study of dynamic behaviors of nonlinear second order differential equations. See, for example, research

[^0]papers [1-9] and the references therein. Recently, Zhang and Li[8] have obtained the following results:

Consider the following p-Laplacian equation:

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}+C x^{\prime}+g(t, x)=e(t), \tag{4}
\end{equation*}
$$

where C is a constant and

$$
\int_{0}^{T} e(t) d t=0
$$

Theorem A. Assume that there exist $K>0$ and $M>0$ such that
$\left(A_{1}\right)\left(g\left(t, u_{1}\right)-g\left(t, u_{2}\right)\right)\left(u_{1}-u_{2}\right)<0$ for all $u_{1}, u_{2}, t \in \mathbb{R}$ with $u_{1} \neq u_{2}$;
$\left(A_{2}\right) x g(t, x)<0$ for all $x \neq 0$ and $t \in \mathbb{R}$;
$\left(A_{3}\right) 2^{2-p} M T^{p}<1$ and $g(t, x) \geq-M|x|^{p-1}-K$ for all $x \geq 0$ and $t \in \mathbb{R}$.
Then (4) has a unique T-periodic solution.
Theorem B. Assume that there exist $K>0$ and $M>0$ such that
$\left(A_{1}^{\prime}\right)\left(g\left(t, u_{1}\right)-g\left(t, u_{2}\right)\right)\left(u_{1}-u_{2}\right)<0$ for all $u_{1}, u_{2}, t \in \mathbb{R}$ with $u_{1} \neq u_{2}$;
$\left(A_{2}^{\prime}\right) x g(t, x)<0$ for all $x \neq 0$ and $t \in \mathbb{R}$;
($\left.A_{3}^{\prime}\right) 2^{2-p} M T^{p}<1$ and $g(t, x) \leq M|x|^{p-1}+K$ for all $x \leq 0$ and $t \in \mathbb{R}$.
Then (4) has a unique T-periodic solution.
More recently, Wang [7] has improved Theorem A and Theorem B, and has obtained the following results:

Theorem C. Assume that there exists $d \geq 0$ such that
$\left(B_{1}\right)\left[g\left(t, u_{1}\right)-g\left(t, u_{2}\right)\right]\left(u_{1}-u_{2}\right)<0 \quad \forall u_{1}$, u_{2}, with $u_{1} \neq u_{2}$, and $t \in \mathbb{R}$.
$\left(B_{2}\right) x g(t, x)<0 \quad \forall|x|>d$ and $t \in \mathbb{R}$.
Then (4) has a unique T-periodic solution.
In this paper, we discuss the existence and uniqueness of T-periodic solutions of the periodic boundary value problem (1)-(2) under some general conditions. The main results of this paper are the following:

Theorem 1. Consider problem (1)-(2). Assume that
$\left(H_{1}\right)$ there exist constants $d>0$ such that for $|x|>d, x g(t, x)<-x^{2} \forall t \in[0, T]$; $\left(H_{2}\right) \alpha^{\prime}(t) \geq-1 \forall t \in[0, T]$.
Then the problem (1)-(2) has at least one T-periodic solution.
Theorem 2. Assume that $\left(H_{1}\right)$ and $\left(H_{2}\right)$ in Theorem 1 and $\left(B_{1}\right)$ in Theorem C hold.

Then (1)-(2) has a unique T-periodic solution.

Remark. In [10], the authors considered a general term $f\left(t, x^{\prime}\right)$ in (1) instead of a specific term $\alpha(t) x^{\prime}$ as in this paper. However, the assumptions (H1) and (H2) of Theorem 1 in this paper do not follow from the assumptions of the Theorem 1 in [10] and hence Theorem 1 in this paper is different from and independent of that in [10].

2. Proofs of Theorems.

We first introduce some well-known results for p-Laplacian-like operators, which will be used in the proof of Theorem 1.

Let $X=C_{T}^{1}[0, T]$ be the space of all T-periodic C^{1}-functions, i.e.,

$$
X=C_{T}^{1}[0, T]=\left\{x(t) \in C^{1}([0, T], \mathbb{R}): x(0)=x(T), x^{\prime}(0)=x^{\prime}(T)\right\}
$$

The norm of a function $x \in C_{T}^{1}[0, T]$ is defined by

$$
\|x\|:=|x|_{\infty}+\left|x^{\prime}\right|_{\infty},
$$

where $|x|_{\infty}:=\max _{t \in[0, T]}|x(t)|$ and $\left|x^{\prime}\right|_{\infty}:=\max _{t \in[0, T]}\left|x^{\prime}(t)\right|$.
Lemma 1 ([5, Theorem 3.1]). Consider the following problem

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=h\left(t, u, u^{\prime}\right), \quad u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T), \tag{5}
\end{equation*}
$$

where $\phi_{p}(u)=|u|^{p-2} u$ with $p>1$ and h is a Caratheodory function and is T-periodic in t. Let $\Omega_{r}=\left\{x \in C_{T}^{1}[0, T]:\|x\|<r\right\}$ for some $r>0$. Suppose that the following conditions hold:
(i) For each $\lambda \in(0,1)$, the problem

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=\lambda h\left(t, u, u^{\prime}\right), \quad u \in C_{T}^{1}[0, T] \tag{6}
\end{equation*}
$$

has no solution on $\partial \Omega_{r}$.
(ii) The function $H(a)$ defined by

$$
H(a):=\frac{1}{T} \int_{0}^{T} h(t, a, 0) d t
$$

satisfies $H(-r) H(r)<0$.
Then the problem (5) has at least one solution in Ω_{r}.
Proof of Theorem 1. Let $h\left(t, x, x^{\prime}\right)=e(t)-\alpha(t) x^{\prime}-g(t, x)$. Then (6) reduces to

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}\right)\right)^{\prime}+\lambda \alpha(t) x^{\prime}+\lambda g(t, x)=\lambda e(t), \quad \lambda \in(0,1) . \tag{7}
\end{equation*}
$$

We first show that the set of all possible T-periodic solutions of (7) is bounded. Let $x(t)$ be an arbitrary T-periodic solution of (7). Integrating both sides of (7) from $t=0$ to $t=T$, and using (2) and integration by parts, we obtain

$$
\int_{0}^{T}\left[g(t, x(t))-\alpha^{\prime}(t) x(t)\right] d t=0
$$

Therefore, there exists $s \in[0, T]$ such that $g(s, x(s))-\alpha^{\prime}(s) x(s)=0$, which implies that $x(s) g(s, x(s))=\alpha^{\prime}(s) x^{2}(s)$. Since $\alpha^{\prime}(s) \geq-1$, we obtain $x(s) g(s, x(s)) \geq$ $-x^{2}(s)$. Now $\left(H_{1}\right)$ implies that $|x(s)|<d$. Then for $t \in[0, T]$, we have

$$
|x(t)|=\left|x(s)+\int_{s}^{t} x^{\prime}(\tau) d \tau\right| \leq d+\int_{0}^{T}\left|x^{\prime}(t)\right| d t
$$

Thus we obtain

$$
\begin{equation*}
|x|_{\infty}=\max _{t \in[0, T]}|x(t)| \leq d+\left|x^{\prime}\right|_{1}, \tag{8}
\end{equation*}
$$

where $\left|x^{\prime}\right|_{1}:=\int_{0}^{T}\left|x^{\prime}(t)\right| d t$.
To show that $\left|x^{\prime}\right|$ is bounded for all $x \in C_{T}^{1}[0, T]$, let $I_{1}=\{t \in[0, T]:|x(t)| \leq d\}$ and $I_{2}=\{t \in[0, T]:|x(t)|>d\}$. Multiplying both sides of (7) by $x(t)$ and integrating from $t=0$ to $t=T$, and noting that $g(t, x(t)) x(t)-\frac{1}{2} \alpha^{\prime}(t) x^{2}(t) \leq$ $-\frac{1}{2} x^{2}(t)<0$ for $t \in I_{2}$ from $\left(H_{1}\right)$ and $\left(H_{2}\right)$, we obtain

$$
\begin{aligned}
\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t= & -\int_{0}^{T}\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime} x(t) d t \\
= & \lambda \int_{0}^{T}\left[g(t, x(t)) x(t)-\frac{1}{2} \alpha^{\prime}(t) x^{2}(t)\right] d t-\lambda \int_{0}^{T} e(t) x(t) d t \\
= & \lambda \int_{I_{1}}\left[g(t, x(t)) x(t)-\frac{1}{2} \alpha^{\prime}(t) x(t)\right] d t \\
& +\lambda \int_{I_{2}}\left[g(t, x(t)) x(t)-\frac{1}{2} \alpha^{\prime}(t) x^{2}(t)\right] d t-\lambda \int_{0}^{T} e(t) x(t) d t \\
\leq & \lambda \int_{I_{1}}\left[g(t, x(t)) x(t)-\frac{1}{2} \alpha^{\prime}(t) x^{2}(t)\right] d t-\lambda \int_{0}^{T} e(t) x(t) d t \\
\leq & \int_{I_{1}}\left[|g(t, x(t)) x(t)|+\frac{1}{2}\left|\alpha^{\prime}(t)\right| x^{2}(t)\right] d t+\int_{0}^{T}|e(t) x(t)| d t \\
\leq & G_{d} T d+\frac{1}{2}\left|\alpha^{\prime}\right|_{\infty} T d^{2}+|e|_{\infty}|x|_{1} \\
: & =M_{1}+|e|_{\infty}|x|_{1},
\end{aligned}
$$

where $G_{d}:=\max _{t \in[0, T],|x| \leq d}|g(t, x)|$ and $M_{1}:=G_{d} T d+\frac{1}{2}\left|\alpha^{\prime}\right|_{\infty} T d^{2}$. Hence we have

$$
\begin{equation*}
\left|x^{\prime}\right|_{p}^{p} \leq M_{1}+|e|_{\infty}|x|_{1} \tag{9}
\end{equation*}
$$

where $\left|x^{\prime}\right|_{p}:=\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t\right)^{1 / p}$. But from (8), we have

$$
\begin{equation*}
|x|_{1}=\int_{0}^{T}|x(t)| d t \leq \int_{0}^{T}\left[d+\left|x^{\prime}\right|_{1}\right] d t=d T+T\left|x^{\prime}\right|_{1} \tag{10}
\end{equation*}
$$

Substituting (10) into (9), we obtain

$$
\begin{equation*}
\left|x^{\prime}\right|_{p}^{p} \leq M_{1}+|e|_{\infty} d T+|e|_{\infty} T\left|x^{\prime}\right|_{1} \tag{11}
\end{equation*}
$$

By Hölder's inequality,

$$
\begin{equation*}
\left|x^{\prime}\right|_{1}=\int_{0}^{T}\left|x^{\prime}(t)\right| d t \leq\left(\int_{0}^{T}\left|x^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{0}^{T} 1^{q} d t\right)^{\frac{1}{q}}=T^{\frac{1}{q}}\left|x^{\prime}\right|_{p} \tag{12}
\end{equation*}
$$

where $q=\frac{p}{p-1}>1$ is the exponent conjugate to p. Substituting (11) into (12), we obtain

$$
\begin{equation*}
\left|x^{\prime}\right|_{1}^{p} \leq T^{p / q} M_{1}+|e|_{\infty} d T^{p}+|e|_{\infty} T^{p}\left|x^{\prime}\right|_{1} \tag{13}
\end{equation*}
$$

Since $p>1$, we see from (13) that there exists a positive constant M_{2} such that $\left|x^{\prime}\right|_{1} \leq M_{2}$. This, together with (8), implies that $|x|_{\infty} \leq M_{3}$, where $M_{3}:=d+M_{2}$.

Next we show that $\left|x^{\prime}(t)\right|$ is bounded. Since $x(0)=x(T)$, there exists $t_{1} \in(0, T)$, such that $x^{\prime}\left(t_{1}\right)=0$. It follows from (7) that for $t \in[0, T]$,

$$
\begin{aligned}
\left|\phi_{p}\left(x^{\prime}(t)\right)\right| & =\mid \int_{t_{1}}^{t}\left(\phi_{p}\left(x^{\prime}(s)\right)^{\prime} d s \mid\right. \\
& =\lambda\left|\int_{t_{1}}^{t}\left[\alpha(s) x^{\prime}(s)+g(s, x(s))-e(s)\right] d s\right| \\
& \leq \int_{0}^{T}\left|\alpha(t) x^{\prime}(t)\right| d t+\int_{0}^{T}|g(t, x(t))| d t+\int_{0}^{T}|e(t)| d t \\
& \leq|\alpha|_{\infty}\left|x^{\prime}\right|_{1}+G_{M} T+|e|_{\infty} T \\
& \leq|\alpha|_{\infty} M_{2}+G_{M} T+|e|_{\infty} T
\end{aligned}
$$

where $G_{M}=\max \left\{|g(t, x)|: t \in[0, T],|x| \leq M_{3}\right\}$.
Since $\left|\phi_{p}\left(x^{\prime}(t)\right)\right|=\left|x^{\prime}(t)\right|^{p-1}$, letting $M_{4}:=\left[|\alpha|_{\infty} M_{2}+G_{M} T+|e|_{\infty} T\right]^{1 /(p-1)}$, then we have

$$
\left|x^{\prime}\right|_{\infty}=\max _{t \in[0, T]}\left|x^{\prime}(t)\right| \leq M_{4}
$$

Finally let $M=M_{3}+M_{4}+1$. Then we have $\|x\|=|x|_{\infty}+\left|x^{\prime}\right|_{\infty}<M$. Thus we have shown that the set of all T-periodic solutions $x(t)$ of (7) is bounded, i.e., $\|x(t)\|<M$.

Now set $\Omega_{M}=\left\{x \in X:\|x\|=|x|_{\infty}+\left|x^{\prime}\right|_{\infty}<M\right\}$. Then the equation (7) has no solution on $\partial \Omega_{M}$ for $\lambda \in(0,1)$, which implies that the condition (i) of Lemma 1
is satisfied. Also, by the definition of $H(a)$, we see that

$$
H(a)=\frac{1}{T} \int_{0}^{T} h(t, a, 0) d t=\frac{1}{T} \int_{0}^{T}[e(t)-g(t, a)] d t=-\frac{1}{T} \int_{0}^{T} g(t, a) d t .
$$

Moreover, for $x= \pm M \in \mathbb{R}$, we have $x \in \partial \Omega_{M}$ and since $M>d$, from the assumption $\left(H_{1}\right)$, we see that $H(-M) H(M)<0$. This implies that the condition (ii) of Lemma 1 is satisfied. Now Lemma 1 implies that problem (1)-(2) has at least one solution in Ω_{M}.

Proof of Theorem 2. We need only to show that under the additional condition $\left(B_{1}\right)$, the problem (1)-(2) has at most one solution.

Suppose on the contrary that (1)-(2) has two distinct solutions $x(t)$ and $y(t)$. Let $u(t)=x(t)-y(t)$. Since $u \in C_{T}^{1}[0, T]$, there exists a $t^{*} \in[0, T]$ such that $u\left(t^{*}\right)=\max _{t \in[0, T]} u(t)$. Suppose $u\left(t^{*}\right)>0$. Then $u^{\prime}\left(t^{*}\right)=x^{\prime}\left(t^{*}\right)-y^{\prime}\left(t^{*}\right)=0$ and $u^{\prime \prime}\left(t^{*}\right)=x^{\prime \prime}\left(t^{*}\right)-y^{\prime \prime}\left(t^{*}\right) \leq 0$, a.e.. Since $x(t)$ and $y(t)$ are solutions of (1) and (2), we get from (1) and the above equality that

$$
\begin{equation*}
0=(p-1)\left[\left|x^{\prime}\left(t^{*}\right)\right|^{p-2} u^{\prime \prime}\left(t^{*}\right)\right]+\left[g\left(t^{*}, x\left(t^{*}\right)\right)-g\left(t^{*}, y\left(t^{*}\right)\right)\right]<0 \text {, a.e. } \tag{14}
\end{equation*}
$$

because the first part of the right side of (14) is non-positive a.e. and the second part of the right side (14) is negative by $\left(B_{1}\right)$. This contraction shows that $x(t) \leq$ $y(t) \forall t \in[0, T]$. Exchanging the role of x and y, we can show that $x(t) \geq y(t) \forall t \in$ $[0, T]$. This shows that $x(t) \equiv y(t)$. Hence (1)-(2) has a unique solution.

References

1. A. Capietto \& Z. Wang: Periodic solutions of Liénard equations with asymmetric nonlinearities at resonance. J. London Math. Soc. 68 (2003), no. 2, 119-132.
2. Y. Li \& L. Huang: New results of periodic solutions for forced rayleigh-type equations. J. Comput. Appl. Math. 221 (2008), 98-105.
3. S. Lu \& W. Ge: Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear analysis: TAM 56 (2004), 501-514.
4. S. Lu \& Z. Gui: On the existence of periodic solutions to p-Laplacian rayleigh differential equations with a delay. J. Math. Anal. Appl. 325 (2007), 685-702.
5. R. Manasevich \& J. Mawhin: Periodic solutions for nonlinear systems with p-Laplacianlike operators. J. Diff. Equations 145 (1998), 367-393.
6. L. Wang \& J. Shao: New results of periodic solutions for a kind of forced rayleigh-type equations. Nonlinear Analysis : RWA 11 (2010), 99-105.
7. Y. Wang: Novel existence and uniqueness criteria for periodic solutions of a Duffing type p-Laplacian equation. Appl. Math. Lett. 23 (2010), 436-439.
8. F. Zhang \& Y. Li: Existence and uniqueness of periodic solutions for a kind of Duffing type p--Laplacian equation. Nonlinear Anal. RWA 9 (2008), 985-989.
9. M. Zong \& H. Liang: Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments. Appl. Math. Lett. 12 (1999), 41-44.
10. X. Yang, Y. Kim \& K. Lo: Periodic solutions for a generalized p-Laplacian equation. Appl. Math. Lett. 25 (2011), 586-589.

Department of Mathematics, University of Ulsan, Ulsan 689-749, Korea
Email address: yikim@mail.ulsan.ac.kr

[^0]: Received by the editors November 16, 2011. Revised March 1, 2012. Accepted April 3, 2012. 2000 Mathematics Subject Classification. 34A12, 34A34.
 Key words and phrases. p-Laplacian, degree theory, periodic solution.

