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MOMENT ESTIMATE AND EXISTENCE FOR THE

SOLUTION OF NEUTRAL STOCHASTIC FUNCTIONAL

DIFFERENTIAL EQUATION

Huabin Chen and Qunjia Wan

Abstract. In this paper, the existence and uniqueness for the global so-
lution of neutral stochastic functional differential equation is investigated

under the locally Lipschitz condition and the contractive condition. The

implicit iterative methodology and the Lyapunov-Razumikhin theorem
are used. The stability analysis for such equations is also applied. One

numerical example is provided to illustrate the effectiveness of the theo-
retical results obtained.

1. Introduction

Many dynamical systems depend on both present and past states, and
involve derivative with delays as well as the functional of the past history
[13, 17, 23]. Neutral functional differential equation is often used to describe
such systems [1, 14,22], which is written as

(1)
d[x(t)−D(xt)]

dt
= f(t, xt), t ∈ [t0, T ].

When the equation (1) is perturbed by random external perturbation [14],
it can be presented as the following neutral stochastic functional differential
equation (NSFDE):

(2) d[x(t)−D(xt)] = f(t, xt)dt+ g(t, xt)dB(t), t ∈ [t0, T ].

NSFDE (2) has some fundamental applications into many important fields such
as mechanical, electrical, biological, medical and physical sciences [2,10,11,19,
20] and the references therein. For some other dynamical properties of NSFDE
(2), we can refer to [3,4,13,14,23,27]. Recently, the existence and uniqueness of
the solution for NSFDE (2) has been developed, many useful results have been
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given in [1, 3, 5–7, 9, 11, 12, 14, 16, 17, 21, 23, 25, 26] and the references therein.
For example, in [14], by using the Picard iterative method and the stochastic
analysis theory, under the globally Lipschitz condition and the contractive con-
dition, Mao discussed the existence and uniqueness of the solution for NSFDE
(2). In [17, 18], when the globally Lipschitz condition is satisfied for the drift
term and the diffusion term, and the contractive condition is fulfilled for the
neutral term, the existence and uniqueness for NSFDE (2) with infinite delay
was analyzed by using the Picard iterative method and the stochastic analy-
sis method. In [1], under the globally Lipschitz condition and the contractive
condition, the existence and uniqueness of the solution of NSFDE (2) was in-
vestigated by employing the implicit iterative methodology and the stochastic
analysis theory.

Note that the results proposed above are applicable for the case, in which the
drift term and the diffusion term satisfy the globally Lipschitz condition. How-
ever, in many realistic models, highly nonlinear stochastic differential equations
usually exist in drift term and the diffusion term, see [3,7,9,13,18] and the ref-
erences therein. Compared with stochastic highly nonlinear delay differential
equation, highly nonlinear NSFDE is much more complex, due to the simul-
taneous existence of the neutral term and the stochastic perturbation. Thus,
the existence and uniqueness, and stability of highly nonlinear NSFDE is very
attracting. For example, in [9], with the drift term and the diffusion term only
satisfy the local Lipschtiz condition, the linear growth condition is replaced
by the monotonicity condition, and the contractive condition is satisfied for
the neutral term, then the existence and uniqueness of the global solution of
NSFDE has been investigated. In [13], under the locally Lipschitz condition
and the contractive condition, the existence and uniqueness, the exponential
stability in moment and the almost surely exponential stability for the global
solution of neutral stochastic delay differential equations have been considered
by using the Lyapunov function and stochastic analysis theory.

In [14], the stochastic version of Lyapunov-Razumikhin methodology has
been firstly established to discuss the exponential stability in moment for
NSFDE (2). Based on this excellent work, such useful methodology has been
developed to analyze the stability of NSFDE (2), and some good results have
been presented in [2,8,15] and the references therein. The results in [8,15] are
obtained under the globally Lipschitz condition for the drift term and the diffu-
sion term. In [24], when the drift term and the diffusion term satisfy the locally
Lipschitz condition with the locally Lipschitz coefficients being time-varying,
the existence and uniqueness, moment estimate for the global solution of sto-
chastic functional differential equations have been investigated by using the
Lyapunov-Razumikhin theorem and stochastic analysis theory. To our knowl-
edge, there is few work on the existence and uniqueness, moment estimate for
the global solution of NSFDE under the locally Lipschitz condition for the drift
term and the diffusion term.

In this paper, we will mainly discuss the existence and uniqueness, moment
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estimate for the global solution of NSFDE, when the drift term and the dif-
fusion term satisfy the locally Lipschitz condition with the locally Lipschitz
coefficients being time-varying. The implicit iterative methodology, the sto-
chastic analysis theory and the Lyapunov-Razumikhin theorem are used. The
exponential stability for the global solution of NSFDE will also be investigated.
One numerical example is given to show the effectiveness of the theoretical re-
sults derived.

2. Preliminaries

In this section, let us recall some notations and basic definitions, and in-
troduce some lemmas. (Ω,F ,Ft≥t0 ,P) represents a completed probability
space with the filtration {Ft}t≥t0 satisfying the usual condition (i.e., it is
right continuous and increasing while Ft0 contains all P-null sets). Let B(t)
be an m-dimensional Brownian motion defined on this probability space, i.e.,
B(t) = (B1(t),B2(t), . . . ,Bm(t))T . ‘E’ denotes the mathematical expectation.
Let | · | be the Euclidean norm in Rn or the trace norm of a matrix in Rn×m.
If A is a matrix or vector, then its transpose is denoted by AT . Here let
L1([a, b];Rn) be the family of Rn-valued and Ft-adapted processes {f(t)}a≤t≤b
such that

∫ b
a
|f(t)|dt ≤ ∞(a.s.). Lp([a, b];Rn×m) (p ≥ 2) means the family

of Rn-valued and Ft-adapted processes {f(t)}a≤t≤b such that
∫ b
a
|f(t)|pdt ≤

∞(a.s.). To avoid confusion, if A is a matrix, its Frobenius norm is de-

noted by |A| =
√

trace(ATA). Let C([t0 − τ, t0];Rn) be the family of all
bounded continuous functions ϕ from [t0 − τ, t0] to Rn equipped with the
norm ‖ϕ‖ = sup

t0−τ≤θ≤t0
|ϕ(θ)|. Let CpFt0 ([t0 − τ, t0];Rn) denotes the family of

all Ft0-measurable, bounded and C([t0 − τ, t0];Rn)-valued random processes
φ = {φ(θ) : t0 − τ ≤ θ ≤ t0} with E‖φ‖p < ∞ (p ≥ 2). For a, b ∈ R,

L(·) ∈ H1([a, b];X) means that
∫ b
a
L(u)du <∞, where X = R or X = [0,+∞),

and a ∨ b denotes the maximum of a and b. It is assumed that the function
L(t) : [a, b]→ R+ to be finite if L(t) <∞ for any t ∈ [a, b].

Now, we consider one n-dimension NSFDE:

(3) d[x(t)−D(xt)] = f(t, xt)dt+ g(t, xt)dB(t), t ≥ t0,

with the initial value xt0 = ξ ∈ C([t0 − τ, t0];Rn). The neutral term D(·) :
C([t0 − τ, t0];Rn)→ Rn, the drift term f(·, ·) : [0, T ]×C([t0 − τ, t0];Rn)→ Rn,
and the diffusion term g(·, ·) : [0, T ]× C([t0 − τ, t0];Rn)→ Rn×m are all Borel
measurable.

Let C1,2([t0,+∞)×Rn; (0,+∞)) denote the family of all functions V (t, x) on
R×Rn, which are once continuously differentiable in t and twice in x. For each
V (t, x−D(ξ)) ∈ C1,2([t0,+∞)×Rn; (0,+∞)), an operator LV (t, x−D(ξ)) of
NSDFE (3) is given by

LV (t, x−D(ξ)) = Vt(t, x−D(ξ)) + Vx(t, x−D(ξ))f(t, ξ)
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+
1

2
trace[gT (t, ξ)Vxx(t, x−D(ξ))g(t, ξ)],

where

Vt(t, x) =
V (t, x−D(ξ))

∂t
,

Vx(t, x) =

[
∂V (t, x−D(ξ))

∂x1
,
∂V (t, x−D(ξ))

∂x2
, . . . ,

∂V (t, x−D(ξ))

∂xn

]
, and

Vxx(t, x−D(ξ)) =

[
∂2V (t, x−D(ξ))

∂xi∂xj

]
n×n

.

Let BT denote the family of all stochastic processes ξ(t, ω) : [t0−τ, T ]×Ω→
Rn, in which ξ(t, ω) is measurable for each fixed t ∈ [t0− τ, T ], and is bounded
continuous in t for a.e. fixed ω ∈ Ω. For any ϕ ∈ BT ,

‖ϕ(t)‖BT = {E( sup
t∈[t0,T ]

|ϕ(t, ω)|p)}
1
p , p ≥ 2.

It can be proved that BT is a Banach space with its norm ‖ · ‖BT (see [5]).
For NSFDE (3), the solution is written as the integral form: for any t ≥ t0,

(4) x(t)−D(xt) = x(t0)−D(xt0) +

∫ t

t0

f(s, xs) ds+

∫ t

t0

g(s, xs) dB(s),

and xt0 = ξ ∈ C([t0 − τ, t0];Rn).

Definition ([14]). An Rn-valued stochastic process x(t) on t0 − τ ≤ t ≤ T
(T > t0) is called a solution of NSFDE (3) with initial data xt0 = ξ = {ξ(θ) :
−τ ≤ θ ≤ 0} ∈ C([t0 − τ, t0];Rn) if it has the following properties:

(i) it is continuous and {xt}t∈[t0,T ] is Ft-adapted;

(ii) {f(t, xt)} ∈ L1([t0, T ];Rn) and {g(t, xt)} ∈ Lp([t0, T ];Rn×m) (p ≥ 2);
(iii) xt0 = ξ and (4) holds for all t ∈ [t0, T ].

A solution x(t) is said to be unique if other solution x(t) is indistinguishable
from it, that is

P{x(t) = x(t) for all t0 − τ ≤ t ≤ T} = 1.

Definition ([14]). Let x(t), t ∈ [t0 − τ, σ∞) be a continuous Ft-adapted Rn-
valued local process, where σ∞ is a stopping time. It is called a local solution of
equation (3) with initial data xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([t0−τ, t0];Rn),
if xt0 = ξ and

x(t∧σk)−D(xt∧σk) = ξ(0)+

∫ t∧σk

t0

f(s, xs)ds+

∫ t∧σk

t0

g(s, xs)dB(s), ∀t ≥ t0,

holds for any k ≥ 1, where {σk}k≥1 is a nondecreasing sequence of finite
stopping time such that σk ↑ σ∞(a.s.). Furthermore, if lim sup

t→σ∞
|x(t)| ≥

lim sup
k→∞

|xk(σk)| = ∞ is satisfied whenever σ∞ < ∞, it is called a maximal

local solution and σ∞ is called the explosion time. A maximal local solution
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x(t), t ∈ [t0 − τ, σ∞) is said to be unique if for any other maximal local so-
lution x̂(t), t ∈ [t0 − τ, σ̂∞), we have σ∞ = σ̂∞ (a.s.) and x(t) = x̂(t) for all
t ∈ [t0 − τ, σ̂∞) (a.s.).

Lemma 2.1 ([14]). For any a, b ≥ 0, p ≥ 2 and ε ∈ (0, 1), we have

|a+ b|p = [1 + ε
1
p−1 ]p−1

(
|a|p +

|b|p

ε

)
.

Lemma 2.2 ([14]). Let p ≥ 2. Then there exist universal positive constant cp

(depending only on p) and g ∈ Lp([t0, T ;Rn×m) such that E
∫ T
t0
|g(s)|pds <∞.

Then

E

(
sup

t0≤t≤T
|
∫ t

t0

g(s)dB(s)|p
)
≤ cpE

∫ T

t0

|g(s)|pds,

where cp =
(

p3

2(p−1)

)p/2
(T − t0)

p−2
2 .

3. Main result

In this section, the existence and uniqueness for the global solution of NSFDE
(3) is firstly investigated. Before conducting, we define an operator:

(5) (Πx)(t) :=


D(xt) + x(t0)−D(xt0) +

∫ t
0
f(s)ds

+
∫ t
0
g(s)dB(s), t ∈ [t0, T ],

ξ ∈ C([t0 − τ, t0];Rn), t ∈ [t0 − τ, t0].

Under the condition (7) (see below), it can be proved that the operator Π :
BT → BT has a unique fixed point. The detailed proof can refer to Lemma 3.4
in [1].

Lemma 3.1. Assume that there exist a finite function L(t) ∈ H1([t0, T ];
[0,+∞)) and constant κ ∈ (0, 1) for p ≥ 2 such that

|f(t, ϕ)− f(t, φ)| ≤ L(t)‖ϕ− φ‖, |g(t, ϕ)− g(t, φ)|p ≤ L(t)‖ϕ− φ‖p,(6)

|D(ϕ)−D(φ)| ≤ κ‖ϕ− φ‖,(7)

for all t ∈ [t0, T ], ϕ, φ ∈ C([t0 − τ, t0];Rn) with

(8) D(0) = 0, f(t, 0) ∈ L1([t0, b];R), g(t, 0) ∈ Lp([t0, T ];Rn×m).

Then the equation (3) has a unique solution x(t) with the initial value xt0 =
ξ ∈ C([t0 − τ, T ];Rn).



284 H. CHEN AND Q. WAN

Proof. Based on the operator (5), we can define the following implicit iterative
scheme:

(9)

xn(t) = ξ(t), t ∈ [t0 − τ, t0], n = 0, 1, 2, . . . ,

x0(t) = ξ(0), t ∈ [t0, T ],

xn(t) = D(xnt ) + x(t0)−D(xt0) +

∫ t

t0

f(s, xn−1s )ds

+

∫ t

t0

g(s, xn−1s )dB(s), t ∈ [t0, T ], n = 1, 2, . . . .

Denote

Jn−1(t) = x(t0) +

∫ t

t0

f(s, xn−1s )ds+

∫ t

t0

g(s, xn−1s )dB(s), t ∈ [t0, T ].

Applying (6), we have

(10)

|f(t, ϕ)|p = |f(t, 0) + f(t, ϕ)− f(t, 0)|p

≤ 2p−1|f(t, 0)|p + 2p−1|f(t, ϕ)− f(t, 0)|p

≤ 2p−1|f(t, 0)|p + 2p−1(L(t))p‖ϕ‖p,
and

(11) |g(t, ϕ)|p ≤ 2p−1|g(t, 0)|p + 2p−1L(t)‖ϕ‖p.
Existence: Apparently, we have x0(t) ∈ BT , t ∈ [t0, T ]. Moreover, we can prove
that xn(t) ∈ BT (n = 1, 2, . . .) for t ∈ [t0, T ]. In fact, from (10) and (11), it
follows that

|xn(t)|p ≤
(

1 + ε
1
p−1

1

)p−1(
|D(xnt )−D(xt0)|p +

|Jn−1(t)|p

ε1

)
≤
(

1

κ

)p−1
(|D(xnt )−D(xt0)|p) +

1

(1− κ)p−1
|Jn−1(t)|p

≤ κ sup
−τ≤θ≤0

[(
1 + ε

1
p−1

2

)p−1(
|xn(t+ θ)|p +

|x(t0 + θ)|p

ε2

)]

+
1

(1− κ)p−1
|Jn−1(t)|p

≤ κ

(
√
κ)p−1

‖xnt ‖p +
κ

(1−
√
κ)p−1

‖xt0‖p +
1

(1− κ)p−1
|Jn−1(t)|p,

where ε1 =
(
1−κ
κ

)p−1
and ε2 =

(
1−
√
κ√
κ

)p−1
, then applying Jn−1(t) yields that

|xn(t)|p ≤ κ

(
√
κ)p−1

‖xnt ‖p +
κ

(1−
√
κ)p−1

‖xt0‖p +

(
3

1− κ

)p−1
|x(t0)|p

+

(
3

1− κ

)p−1 ∣∣∣∣∫ t

t0

f(s, xn−1s )ds

∣∣∣∣p(12)
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+

(
3

1− κ

)p−1 ∣∣∣∣∫ t

t0

g(s, xn−1s )dB(s)

∣∣∣∣p .
Using the Hölder inequality, Lemma 2.1 and Lemma 2.2, one derives from

(12) that

E sup
t0≤s≤t

|xn(s)|p

≤ κ

(
√
κ)p−1

E( sup
t0−τ≤s≤t

|xn(s)|p) +
κ(1 +

√
κ)p−1 + 3p−1

(1− κ)p−1
E‖ξ‖p

+

(
3

1− κ

)p−1
E

(
sup

t0≤ θ≤t

∫ θ

t0

|f(s, xn−1s )|ds
)p

+

(
3

1− κ

)p−1
cpE

∫ t

t0

|g(s, xn−1s )|pds.

From (10) and (11), it implies that

E( sup
t0≤s≤t

|xn(s)|p)

≤ κ

(
√
κ)p−1

E( sup
t0−τ≤s≤t

|xn(s)|p) +
κ(1 +

√
κ)p−1 + 3p−1

(1− κ)p−1
E‖ξ‖p

+

(
6

1− κ

)p−1 ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds

+

(
6

1− κ

)p−1{(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

}∫ t

t0

E( sup
t0≤s≤t

‖xn−1s ‖p)ds.

Due to the fact that E( sup
t0−τ≤s≤t

|xn(s)|p) ≤ E‖ξ‖p + E( sup
t0≤s≤t

|xn(s)|p), it

implies

E( sup
t0−τ≤s≤t

|xn(s)|p)

≤ κ

(
√
κ)p−1

E( sup
t0−τ≤s≤t

|xn(s)|p) +
κ(1 +

√
κ)p−1 + 3p−1 + (1− κ)p−1

(1− κ)p−1
E‖ξ‖p

+

(
6

1− κ

)p−1 ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds

+

(
6

1− κ

)p−1{(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

}∫ t

t0

E( sup
t0≤s≤t

‖xn−1s ‖p)ds,

which follows that

E( sup
t0−τ≤s≤t

|xn(s)|p)

≤ κ(1 +
√
κ)p−1 + 3p−1 + (1− κ)p−1

(1− κ)p−1
(

1− κ p+1
2

) E‖ξ‖p(13)
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+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds

+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) {(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

}

×
∫ t

t0

E( sup
t0−τ≤s≤t

|xn−1s |p)ds.

From (13), one yields that for any N ≥ 1,

max
1≤n≤N

E( sup
t0−τ≤s≤t

|xn(s)|p)

≤ κ(1 +
√
κ)p−1 + 3p−1 + (1− κ)p−1

(1− κ)p−1
(

1− κ p+1
2

) E‖ξ‖p

+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds

+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) {(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

}

×
∫ t

t0

max
1≤n≤N

E( sup
t0−τ≤u≤s

|xn(u)|p)ds.

Then, by using the Gronwall inequality, we have

max
1≤n≤N

E( sup
t0−τ≤s≤t

|xn(s)|p)

≤
{
κ(1 +

√
κ)p−1 + 3p−1 + (1− κ)p−1

(1− κ)p−1
(

1− κ p+1
2

) E‖ξ‖p

+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds
}

(14)

× exp

{
6p−1

(1− κ)p−1
(

1− κ p+1
2

) [(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]}
.

Since N is arbitrary, it implies from (14) that

E( sup
t0−τ≤s≤t

|xn(s)|p)

≤
{
κ(1 +

√
κ)p−1 + 3p−1 + (1− κ)p−1

(1− κ)p−1
(

1− κ p+1
2

) E‖ξ‖p
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+
6p−1

(1− κ)p−1
(

1− κ p+1
2

) ∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds
}

× exp

{
6p−1

(1− κ)p−1
(

1− κ p+1
2

) [(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]}
for all t ∈ [0, T ] (n = 1, 2, . . .). Therefore, xn(t) ∈ BT (n = 0, 1, 2, . . .) for all
t ∈ [t0 − τ, T ]. Similar to the previous reasoning process, it follows

|x1(t)|p ≤ κ

(
√
κ)p−1

sup
t0−τ≤s≤t

|x1(s)|p +
κ(1 +

√
κ)p−1 + 3p−1

(1− κ)p−1
‖ξ‖p

+

(
3

1− κ

)p−1(∫ t

t0

|f(s, x0s)|ds
)p

+

(
3

1− κ

)p−1∣∣∣∣∫ t

t0

g(s, x0s)dB(s)

∣∣∣∣p.
Hence, it is also shown that

E( sup
to−τ≤s≤t

|x1(t)|p)

≤
κ(1+

√
κ)p−1+3p−1+(1−κ)p−1+6p−1

[(∫ t
t0
L(s)ds

)p
+cp

∫ t
t0
L(s)ds

]
(1−κ)p−1

(
1−κ

p+1
2

)(15)

× E‖ξ‖p

+ 6p−1

(1−κ)p−1

(
1−κ

p+1
2

){∫ t

t0

[(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|p]ds
}

:= C1.

Similarly,

|x1(t)− x0(t)|p

≤ 1

κp−1
|D(x0t )−D(x0)|p

+

(
2

1− κ

)p−1(∣∣∣∣∫ t

t0

f(s, x0s)ds

∣∣∣∣p +

∣∣∣∣∫ t

t0

g(s, x0s)dB(s)

∣∣∣∣p)
≤ κ

(
√
κ)p−1

sup
t0−τ≤s≤t

|x1(s)|p +
κ(1 +

√
κ)p−1

(1− κ)p−1
‖ξ‖p

+

(
2

1− κ

)p−1(∣∣∣∣∫ t

t0

f(s, x0s)ds

∣∣∣∣p +

∣∣∣∣∫ t

t0

|g(s, x0s)|dB(s)

∣∣∣∣p),
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and

E( sup
t0≤s≤t

|x1(t)− x0(t)|)p

≤ κ

(
√
κ)p−1

sup
t0−τ≤s≤t

|x1(s)|p +
κ(1 +

√
κ)p−1

(1− κ)p−1
‖ξ‖2

+

(
4

1− κ

)p−1[∫ t

t0

(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|pds
]

+

(
4

1− κ

)p−1[(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

] ∫ t

t0

E[ sup
t0−τ≤s≤t

|xs|p]ds

≤ κ

(
√
κ)p−1

sup
t0−τ≤s≤t

|x1(s)|p +
κ(1 +

√
κ)p−1

(1− κ)p−1
‖ξ‖2

+

(
4

1− κ

)p−1[∫ t

t0

(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|pds
]

+

(
4

1− κ

)p−1[(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]
(t− t0)‖ξ‖p.

Therefore, applying (15), it gives

E( sup
t0−τ≤s≤t

|x1(t)− x0(t)|)p

≤ E( sup
t0≤s≤t

|x1(t)− x0(t)|)p(16)

≤ κ

(
√
κ)p−1

C1 +

(
4

1− κ

)p−1[∫ t

t0

(t− t0)p−1|f(s, 0)|p + cp|g(s, 0)|pds
]

+
4p−1 + κ(1 +

√
κ)p−1

(1− κ)p−1

[(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]
E‖ξ‖p

≡ C

for all t ∈ [t0, T ].
Now, we will prove that for any n ≥ 0,

E( sup
t0−τ≤s≤t

|xn+1(t)− xn(t)|)p(17)

≤ C

{
2p−1

(1− κ)p

[
(t− t0)p−1

(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]}n
(t− t0)n

n!
,

where C is defined in (16).
According to (16), it is easily seen that (17) holds when n = 0. Under the

inductive assumption that (17) holds for some n ≥ 0. We shall show that
inequality (17) still holds for n+ 1. Note that

|xn+2(t)− xn+1(t)|p =

∣∣∣∣D(xn+2
t )−D(xn+1

t ) +

∫ t

t0

(f(s, xn+1
s )− f(s, xns ))ds
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+

∫ t

t0

(g(s, xn+1
s )− g(s, xns ))dB(s)

∣∣∣∣p
≤ κ sup

t0−τ≤s≤t
|xn+2(s)− xn+1(s)|p +

(
2

1− κ

)p−1
×
∣∣∣∣∫ t

t0

[f(s, xn+1
s )− f(s, xns )]ds

∣∣∣∣p
+

(
2

1− κ

)p−1∣∣∣∣∫ t

t0

[g(s, xn+1
s )− g(s, xns )]dB(s)

∣∣∣∣p.
Then, by using Lemma 2.2, it implies

E( sup
t0−τ≤s≤t

|xn+2(t)− xn+1(t)|p)

≤ E sup
t0≤s≤t

|xn+2(t)− xn+1(t)|p

≤ κE( sup
t0−τ≤s≤t

|xn+2(s)− xn+1(s)|p)

+

(
2

1− κ

)p−1
(t− t0)p−1

[(∫ t

t0

L(s)ds

)p
×
∫ t

t0

E( sup
t0−τ≤s≤t

|xn+1(s)− xn(s)|p)ds
]

+

(
2

1− κ

)p−1[
cp

∫ t

t0

L(s)ds

∫ t

t0

E( sup
t0−τ≤s≤t

|xn+1(t)− xn(t)|p)ds
]
.

It can also be claimed that

E( sup
t0−τ≤s≤t

|xn+2(t)− xn+1(t)|p)

≤ 2p−1

(1− κ)p

[
(t− t0)p−1

(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]
×
∫ t

t0

E( sup
t0−τ≤s≤t

|xn+1(s)− xn(s)|p)ds

≤ C

{
2p−1

(1− κ)p

[
(t− t0)p−1

(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]}n+1
(t− t0)n+1

(n+ 1)!
,

which implies that (17) holds for n+ 1. Hence, the inequality (17) holds for all
n > 0.

For any m ≥ n ≥ 1, we obtain

‖xm − xn‖pBT
= E( sup

t0−τ≤s≤t
|xm(t)− xn(t)|p)
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≤
+∞∑
k=n

E( sup
t0−τ≤s≤t

|xk+1(t)− xk(t)|p)

≤
+∞∑
k=n

{
C

[
2p−1

(1− k)p

(
(t− t0)p−1

(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

)]k
(t− t0)k

k!

}
→ 0 as n→ +∞.

Thus, {xn(t)}n≥1 is a Cauchy sequence in Banach space BT . Denote the limit
by x(t) ∈ BT (t ∈ [t0, T ]). When letting n → +∞ in (9), we can derive the
solution of NSFDE (3) with the initial value xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤
0} ∈ C([t0 − τ, t0];Rn). In other words, the existence of the solution have been
shown.
Uniqueness. Let x(t) and x(t) be two solutions of (3) with same initial value.
Similar to the derivation process of inequality (17), we have

(18)

E( sup
t0−τ≤s≤t

|x(s)− x(s)|p)

≤ E( sup
t0≤s≤t

|x(s)− x(s)|p)

≤ 2p−1

(1− κ)p

[
(t− t0)p−1

(∫ t

t0

L(s)ds

)p
+ cp

∫ t

t0

L(s)ds

]
×
∫ t

t0

E( sup
t0−τ≤r≤s

|x(r)− x(r)|p)ds

for t ∈ [t0, T ]. Then, by applying the Gronwall inequality to the inequality
(18), it shows

E( sup
t0−τ≤s≤t

|x(s)− x(s)|p) = 0 for t ∈ [t0, T ].

Hence, it yields

‖x− x‖pBT = E( sup
t0−τ≤s≤t

|x(s)− x(s)|p) = 0,

which implies that the uniqueness of the solution for NSFDE (3) with xt0 =
ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([t0 − τ, t0];Rn) is guaranteed. �

Lemma 3.2. Suppose that conditions (7)-(8) hold, and

|f(t, ϕ)− f(t, φ)| ≤ Km(t)‖ϕ− φ‖,
|g(t, ϕ)− g(t, φ)|p ≤ Km(t)‖ϕ− φ‖p,

(19)

are satisfied for all t ∈ [t0, T ], ϕ, φ ∈ C([t0 − τ, t0];Rn), with ‖ϕ‖ ∨ ‖φ‖ ≤ m,
and p ≥ 2, where Km(t) ∈ H1([t0, T ]; [0,+∞)). Then, there exists a uniqueness
maximal local solution x(t) of NSFDE (1).

Proof. Since (19) holds for ϕ ∈ C([t0 − τ, t0];Rn) with ‖ϕ‖ ≤ m, we can define

fm(t, ϕ) = f

(
t,
m ∧ ‖ϕ‖
‖ϕ‖

ϕ

)
, gm(t, ϕ) = g

(
t,
m ∧ ‖ϕ‖
‖ϕ‖

ϕ

)
,
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and ‖ϕ‖‖ϕ‖ = 1, when ϕ ≡ 0. Then, it is seen that fm(·, ·) and gm(·, ·) satisfy the

condition (6). Moreover, the following equation

(20) d(xm(t)−D(xmt )) = fm(t, xm(t))dt− gm(t, xm(t))dB(t), t ∈ [t0, T ],

xm(t0) = xm(t0 + s) =

{
ξ if‖ξ‖ ≤ m
0 if‖ξ‖ > m

s ∈ [−τ, 0],

has a unique continuous solution xm(t).
Now, we define the sequence of stopping time:

δm = T ∧ inf{t ∈ [t0, T ] : |xm(t)| ≥ m}.

It is not difficult to show that

(21) xm(t) = xm+1(t), if t0 ≤ t ≤ δm.

This implies that δm is increasing, and has its limit δ∞ = lim
m→∞

δm. Now we

define {x(t) : t0 ≤ t < δm} by

x(t) = xm(t), t ∈ [δm−1, δm), m ≥ 1,

where δ0 = t0. By (21), x(t∧ δm) = xm(t∧ δm). Therefore, it follows from (20)
that

x(t ∧ δm)

= ξ(0) +D(x0t )−D(ξ) +

∫ t∧δm

t0

f(s, x(s))ds+

∫ t∧δm

t0

g(s, x(s))dB(s)

= ξ(0) +D(x0t )−D(ξ) +

∫ t∧δm

t0

fm(s, x(s))ds+

∫ t∧δm

t0

gm(s, x(s))dB(s)

for any t ∈ [t0, T ) and m ≥ 1. It is seen that if δ∞ < T , then

lim sup
t→δ∞

|x(t)| ≥ lim sup
m→∞

|x(δm)| = lim sup
m→∞

|xm(δm)| =∞.

Hence, {x(t) : t0 ≤ t < δ∞} is a maximal local solution. To prove the
uniqueness, let {x̄(t) : t0 ≤ t < δ̄∞} be another maximal local solution. Define

δ̄m = δ̄∞ ∧ inf{t ∈ [t0, δ̄∞) : |x̄(t)| ≥ m}.

It is shown that δ̄m → δ̄∞ a.s. and

P{x(t) = x̄(t), ∀t ∈ [t0, δm ∧ δ̄m)} = 1, ∀m ≥ 1.

As m→∞, it yields

P{x(t) = x̄(t), ∀t ∈ [t0, δ∞ ∧ δ̄∞)} = 1.

To complete the proof, we need to show that δ∞ = δ̄∞ a.s. In fact, for
almost any ω ∈ {δ∞ < δ̄∞}, we have

|x̄(δ∞, ω)| = lim
m→∞

|x̄(δm, ω)| = lim
m→∞

|x(δm, ω)| =∞
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which contradicts with the continuity of x̄(t, ω) on t ∈ [t0, δ̄∞(ω)), then we
must have δ∞ ≥ δ̄∞ a.s. Similarly, we can show that δ∞ ≤ δ̄∞ a.s. Therefore,
we must have δ∞ = δ̄∞. �

Theorem 3.3. Let conditions (7)-(8) and (19) hold. Suppose that there exist a
Lyapunov function V ∈ C1,2([t0− τ, T )×Rn;R+), q ∈ H1([t0− τ, t]; [0,+∞)]),
and p ∈ H1([t0 − τ, t];R) such that

(22) lim
|x|→∞

[ inf
t0−τ≤t<T

V (t, ξ(0)−D(ξ))] =∞,

and

(23) LV (t, ξ(0)−D(ξ)) ≤ −p(t)V (t, ξ(0)−D(ξ)) + q(t),

for any (t, ξ) ∈ [t0,+∞) × C([t0 − τ, t0];Rn), whenever V (s, x(s) − D(xs)) ≤
V (t, x(t)−D(xt))e

∫ t
s
p(u)du for any s ∈ [t0 − τ, t].

Then, NSFDE (3) with xt0 = ξ ∈ C([t0− τ, t0];Rn) has a unique continuous
solution x(t) for t ∈ [t0, T ), and the solution satisfies the following moment
estimate

E[V (t, x(t)−D(xt))]

≤ e
−

∫ t
t0
p(s)ds

E sup
t0−τ≤s≤t0

[V (s, x(s)−D(xs))e
∫ s
t0
p(u)du

]

+

∫ t

to

q(u)e−
∫ s
u
p(s)dsdu(24)

≤ eKe
−

∫ t
t0
p(s)ds

E sup
t0−τ≤s≤t0

[V (s, x(s)−D(xs))] +

∫ t

to

q(u)e−
∫ s
u
p(s)dsdu

for t ∈ [t0, T ), where K =
∫ t0
t0−τ |p(s)|ds.

Furthermore, EV (t, ξ(0) − D(ξ)) is continuous in [t0, T ), and E|x(t) −
D(xt)|p (p ≥ 2) is continuous in [t0, T ) if there exists a constant c > 0 such
that

(25) c|ξ(0)−D(ξ)|p ≤ V (t, ξ(0)−D(ξ)), ∀t ∈ [t0, T ).

Proof. Since D(·), f(·, ·) and g(·, ·) in NSFDE (3) satisfies conditions (8) and
(19), Lemma 3.1 guarantees that there exists a unique continuous solution x(t)
with xt0 ∈ C([t0 − τ, t0];Rn), for t ∈ [t0, δ∞), where δ∞ is the explosion time.
Define ω(t) = sup

t−τ≤s≤t
ω(s) for t ∈ [t0, δ∞), where

(26)

ω(t) =

{
V (t, x(t)−D(xt))e

∫ t
t0
p(s)ds −

∫ t
t0
q(u)e

∫ u
t0
p(s)ds

du for t ∈ [t0, δ∞),

V (t, x(t)−D(xt))e
∫ t
t0
p(s)ds

for t ∈ [t0 − τ, t0].

Then, it is seen that ω(t) is continuous for any t ∈ [t0, δ∞). Meanwhile, there
exists an s0 = s0(ω) ∈ [t0− τ, t] such that ω(t) = ω(s0). Thus, s0 = t or s0 < t
and ω(s) < ω(s0) for s0 < s ≤ t.
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If s0 < t, then for sufficiently small h > 0, ω(t+ h) = ω(t) and

Lω(t) = 0,

If s0 = t, then ω(t) = ω(t), i.e.,

ω(t) ≥ ω(s)

for any s ∈ [t0 − τ, t].
Now, for any s ∈ [t0 − τ, t],

e
∫ s
t0
p(u)du

V (s, x(s)−D(xs)) ≤ e
∫ t
t0
p(s)ds

V (t, x(t)−D(xt)).

Since t > t0, we put it into two cases to prove the assertion:
(i) for any s ∈ [t0 − τ, t0], from (23) and (25), it implies that

e
∫ s
t0
p(u)du

V (s, x(s)−D(xs)) ≤ ω(s)

≤ ω(t)

≤ ω(t) +

∫ t

t0

q(u)e
∫ u
t0
p(s)ds

du

= e
∫ t
t0
p(s)ds

V (t, x(t)−D(xt)).

(ii) for any s ∈ [t0, t], from (23) and (25), it follows that

e
∫ s
t0
p(u)du

V (s, x(s)−D(xs)) = ω(s) +

∫ s

t0

q(u)e
∫ u
t0
p(z)dz

du

≤ ω(t) +

∫ t

t0

q(u)e
∫ u
t0
p(s)ds

du

= e
∫ t
t0
p(s)ds

V (t, x(t)−D(xt)).

Consequently, (26) holds, that is,

(27) V (s, x(s)−D(xs)) ≤ e
∫ t
t0
p(u)du

V (t, x(t)−D(xt))

is satisfied for any s ∈ [t0 − τ, t].
Thus, from (22), (23) and the continuity of ω(t), it gives that

ω(t) = sup
t0−τ≤s≤t

[V (s, x(s)−D(xs))]e
∫ t
t0
p(s)ds −

∫ t

t0

q(u)e
∫ u
t0
p(s)ds

du,

and when s0 = t, ω(t) = ω(t). Hence, the Itô operator for ω(t) is calculated as
follows

L+ω(t) = [V (t, x(t)−D(xt))]D
+

(
e
∫ t
t0
p(s)ds

)
+ e

∫ t
t0
p(s)dsLV (t, x(t)−D(xt))−D+

[∫ t

t0

q(u)e
∫ u
t0
p(s)ds

du

]
≤ e

∫ t
t0
p(s)ds

[q(t)− p(t)V + p(t)V − q(t)]
≤ 0,
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where D+(·) denotes the upper Dini right-hand derivative. From (24), for
s0 < t and s0 = t, we have Lω(t) ≥ 0.

To prove that the solution x(t) exists globally, we set δm as the stopping time,
which means the time at which x(t) firstly leaves Um = {|x| < m}. Letting
xm(t) = x(δm(t)) and V m[t, x(t) − D(xt)] = V [δm(t), x(δm(t) − D(xδm(t)))],
where δm(t) = t ∧ δm. Then, we have xm(t) and V m[t, x(t) −D(xt)] are both
continuous for all t ∈ [t0, δ∞). For any t ∈ [t0, δ∞) and δ∞ ∈ (t0, T ), xm(t)
satisfies the following equation

d(xm(t)−D(xmt )) = I[t0−τ,δm](t)[f(t, xmt )dt+ g(t, xmt )dB(t)] a.s.,

then we have E[V m(t, x(t)−D(xt))] <∞. From Lω(t) ≤ 0, we have Lω(δm(t))
≤ 0 for any t ∈ [t0, δ∞). Hence, since δm(t) = t ∧ δm, it gives

Eω(δm(t)) ≤ Eω(t0)

for t ∈ [t0, δ∞). From (24) and (27), we have ω(δm(t)) ≤ ω(δm(t)), and

E

[
V m(t, x(t)−D(xt))e

∫ δm(t)
t0

p(s)ds

]
≤ E sup

t0−τ≤s≤t0

[
V (s, x(s)−D(xs))e

∫ s
t0
p(u)du

]
+ E

∫ δm(t)

t0

q(u)e
−

∫ u
t0
p(s)ds

du

= u(t).

For any δ∞ ∈ [t0, T ), there exists a constant K > 0 such that
∫ b
t0
|p(s)|ds <

K. When |xm(t)| ≤ m, by using the Chebyshev’s inequality [3], it yields

(28)

P{δm ∈ [t0, δ∞)} ≤
E

[
V m(t, x(t)−D(xt))e

∫ δm(t)
t0

p(s)ds

]
inf

s∈[t0,δ∞)×{|x|>m}

[
V (s, x(s))e

∫ s
t0
p(u)du

]

≤
sup

s∈[t0,δ∞)

u(s)

eK inf
s∈[t0,δ∞)×{|x|>m}

V (s, x(s))
.

Since q ∈ H1([t0, δ∞]; [0,+∞)), p ∈ H1([t0, δ∞];R),
∫ δm(t)

t0
q(u)e

−
∫ u
t0
p(s)ds

du ∈
H1([t0−τ, t]; [0,+∞)), sup

s∈[t0,δ∞)

u(s) <∞ for δ∞ ∈ [t0, T ). From (22) and (28),

it follows that lim
m→∞

P (δm ∈ [t0, δ∞)) = 0, and x(t) = lim
m→∞

xm(t) exists on

[t0, T ), which show the existence and uniqueness of the solution for NSFDE (1)
on [t0, T ). As m→∞, we have

E

[
V m(t, x(s)−D(xs))e

∫ δm(t)
t0

p(s)ds

]
≤ E sup

t0−τ≤s≤t0

[
V (s, x(s)−D(xs))e

∫ s
t0
p(u)du

]
+ E

∫ δm(t)

t0

q(u)e
−

∫ u
t0
p(s)ds

du.
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Then, from (23) and (25), by using the dominated convergence theorem in [14],
EV (t, ξ(0)−D(ξ)) and E|x(t−D(xt))|p are continuous. �

Corollary 3.4. If all conditions in Theorem 3.3 are satisfied except that (23)
replaced by

(29) ELV (t, ξ(0)−D(ξ)) ≤ −p(t)EV (t, ξ(0)−D(ξ)) + q(t),

where ξ ∈ C([t0 − τ, t0];Rn), whenever EV (s, x(s) − D(xs)) ≤ EV (t, x(t) −
D(xt))e

∫ t
s
p(u)du for s ∈ [t0 − τ, t]. Then, the conclusions are still satisfied,

except that (24) replace by

E

[
V (t, x(t)−D(xt))

]
≤ e

−
∫ t
t0
p(s)ds

E sup
t0−τ≤s≤t0

[
V (s, x(s)−D(xs))e

∫ s
t0
p(u)du

]
+

∫ t

to

q(u)e−
∫ s
u
p(s)dsdu

≤ eKe
−

∫ t
t0
p(s)ds

sup
t0−τ≤s≤t0

[
EV (s, x(s)−D(xs))

]
+

∫ t

to

q(u)e−
∫ t
u
p(s)dsdu

for t ∈ [t0, T ).

Proof. Since E[V m(t, ξ(0) − D(ξ))] < ∞, and both ξ(0) − D(ξ) and
V m(t, ξ(0)−D(ξ)) are continuous, by dominated convergence theorem in [14],
E[V m(t, ξ(0)−D(ξ))] is continuous. Then, for small enough h > 0, we have

∆E[V m(t, x(t)−D(xt))]

= E[V m(t, x(t+ h)−D(xt+h))]− E[V m(t, x(t)−D(xt))]

= E

∫ (t+h)∧δm

t∧δm
LV m(s, x(s)−D(xs))ds.

As h→ 0+, it follows

D+E[V m(t, x(t)−D(xt))] = ELV m(t, x(t)−D(xt)) for t ∈ [t0, T ).

Then, from condition (29), and as n→∞, we have

D+E[V (t, x(t)−D(xt))] ≤ −p(t)EV (t, x(t)−D(xt)) + q(t) for t ∈ [t0, T ),

whenever EV (s, x(s)−D(xs)) ≤ EV (t, x(t)−D(xt))e
∫ t
s
p(u)du for s ∈ [t0−τ, t].

This leads to the fact that the condition (23) is satisfied. Applying Theorem
3.3, the conclusion of this corollary is derived. �

Corollary 3.5. Let C1(R, [0,+∞)) denote the family of all functions ψ(t) on
R, which is once continuously differentiable in t with ψ′(t) ≥ 0. Suppose that
all conditions of Theorem 3.3 are satisfied except that condition (23) replaced
by

ELV (t, x(t)−D(xt)) ≤ −λ
ψ′(t)

ψ(t)
EV (t, x(t)−D(xt)), ∀t ∈ [t0, T ),
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for some constant λ > 0, whenever

EV (s, x(s)−D(xs)) ≤
ψλ(t)

ψλ(s)
EV (t, x(t)−D(xt)), ∀s ∈ [t0 − τ, t).

Then, NSFDE (3) has a unique solution x(t) for t ∈ [t0, T ), and

EV (t, x(t)−D(xt)) ≤
ψλ(t)

ψλ(s)
E sup
−τ≤s≤0

V (t0+s, x(t0+s)−D(xt0+s)), ∀t ≥ t0.

Proof. Taking p(t) = λψ
′(t)
ψ(t) , we have e

∫ s
t
p(u)du = eλ

∫ t
s
ψ′(u)
ψ(u) du = ψλ(t)

ψλ(s)
. �

4. An example

In this section, we consider the following NSFDE:

(30)

d[x(t)−D(xt)] = −
[
a(t)[x(t)−D(xt)]

3 +
1

2
| sin t|[x(t)−D(xt)]

]
dt

+ sin t

∫ 0

−τ
h(s)[x(t+ s)−D(xt+s)]dsdB(t),

on t ≥ 0, with the initial value x0 = ξ ∈ C([−τ, 0];R), where a(t) ≥ 0 and h(s)

is a real-valued function with
∫ 0

−τ e
−µs|h(s)|ds = h̄(µ) < ∞ for some positive

number µ. In (30), for neutral term D(ξ), there exists a constant κ ∈ (0, 1)

such that |D(ξ)| ≤ κ‖ξ‖. Let ζλ =
∫ 0

−τ e
−λ2 s|h(s)|ds and λ ∈ [0, µ], such that

(31) 1− ζ2λ ≥ λ.

Letting V (t, ξ(0)−D(ξ)) = |ξ(0)−D(ξ)|2, from (30) and (31), we have

LV (t, x(t)−D(xt))

= − 2[x(t)−D(xt)]

[
a(t)[x(t)−D(xt)]

3 +
1

2
| sin t|[x(t)−D(xt)]

]
+

[
sin t

∫ 0

−τ
h(s)[x(t+ s)−D(xt+s)]ds

]2
≤ − | sin t|

{
V (x(t))−

[∫ 0

−τ
h(s)

√
x(t+ s)−D(xt+s)ds

]2}

≤ − | sin t|

[
1−

(∫ 0

−τ
e
λ
2

∫ t
t+s
| sinu|duh(s)ds

)2
]
V (x(t))

≤ − | sin t|
[
1−

(∫ 0

−τ
e
λ
2 sh(s)ds

)2]
V (x(t))

≤ − λ| sin(t)|V (t, x(t)−D(xt)),

whenever V (s, x(s)−D(xs)) ≤ eλ
∫ t
s
| sin(u)|duV (t, x(t)−D(xt)) for all s ∈ [t0−

τ, t]. From Theorem 3.3, the existence and uniqueness for the global solution



MOMENT ESTIMATE AND EXISTENCE FOR THE SOLUTION OF NSFDE 297

x(t) of NSFDE (30) with initial value ξ ∈ C([t0 − τ, t0];R) is guaranteed, and
x(t) satisfies

E|x(t)−D(xt)|2 = EV (t, x(t)−D(xt)) ≤ E‖ξ‖2e−λ
∫ t
t0
| sin(s)|ds

, t ≥ t0.
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[15] J. Randjelović and S. Janković, On the pth moment exponential stability criteria of
neutral stochastic functional differential equations, J. Math. Anal. Appl. 326 (2007),
no. 1, 266–280. https://doi.org/10.1016/j.jmaa.2006.02.030

https://doi.org/10.13764/j.cnki.ncdl.2021.05.003
https://doi.org/10.1007/978-3-642-11079-5_2
https://doi.org/10.1007/978-3-642-11079-5_2
https://doi.org/10.1137/060658138
https://doi.org/10.1109/TAC.2013.2256014
https://doi.org/10.1016/j.jmaa.2009.02.011
https://doi.org/10.1016/j.cam.2009.12.033
https://doi.org/10.3934/dcds.2009.24.523
https://doi.org/10.1016/j.spa.2005.02.006
https://doi.org/10.1016/j.sysconle.2006.04.005
https://doi.org/10.1016/j.sysconle.2006.04.005
https://doi.org/10.1016/j.jmaa.2006.02.030


298 H. CHEN AND Q. WAN

[16] Y. Ren, S. Lu, and N. Xia, Remarks on the existence and uniqueness of the solutions to

stochastic functional differential equations with infinite delay, J. Comput. Appl. Math.

220 (2008), no. 1-2, 364–372. https://doi.org/10.1016/j.cam.2007.08.022
[17] Y. Ren and N. Xia, Existence, uniqueness and stability of the solutions to neutral sto-

chastic functional differential equations with infinite delay, Appl. Math. Comput. 210
(2009), no. 1, 72–79. https://doi.org/10.1016/j.amc.2008.11.009

[18] M. Shen, C. Fei, W. Fei, and X. Mao, Boundedness and stability of highly nonlinear

hybrid neutral stochastic systems with multiple delays, Sci. China Inf. Sci. 62 (2019),
no. 10, 202205. https://doi.org/10.1007/s11432-018-9755-7

[19] Y. Shen, Q. Luo, and X. Mao, The improved LaSalle-type theorems for stochastic

functional differential equations, J. Math. Anal. Appl. 318 (2006), no. 1, 134–154.
https://doi.org/10.1016/j.jmaa.2005.05.026

[20] L. Wan and Q. Zhou, Stochastic Lotka-Volterra model with infinite delay, Statist.

Probab. Lett. 79 (2009), no. 5, 698–706. https://doi.org/10.1016/j.spl.2008.10.016
[21] F. Wang and K. Wang, The existence and uniqueness of the solution for stochastic

functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007),

no. 1, 516–531. https://doi.org/10.1016/j.jmaa.2006.09.020
[22] F. Wu, S. Hu, and C. Huang, Robustness of general decay stability of nonlinear neutral

stochastic functional differential equations with infinite delay, Syst. Control Lett. 59
(2010), no. 3-4, 195–202. https://doi.org/10.1016/j.sysconle.2010.01.004

[23] F. Wu and X. Mao, Numerical solutions of neutral stochastic functional differential

equations, SIAM J. Numer. Anal. 46 (2008), no. 4, 1821–1841. https://doi.org/10.
1137/070697021

[24] D. Xu, B. Li, S. Long, and L. Teng, Moment estimate and existence for solutions

of stochastic functional differential equations, Nonlinear Anal. 108 (2014), 128–143.
https://doi.org/10.1016/j.na.2014.05.004

[25] D. Xu, X. Wang, and Z. Yang, Further results on existence-uniqueness for stochastic

functional differential equations, Sci. China Math. 56 (2013), no. 6, 1169–1180. https:
//doi.org/10.1007/s11425-012-4553-1

[26] Z. Yang, D. Xu, and L. Xiang, Exponential p-stability of impulsive stochastic differential

equations with delays, Phys. Lett. A 359 (2006), no. 2, 129–137. https://doi.org/10.
1016/j.physleta.2006.05.090

[27] P. Yu, Analysis of stationary periodic stable solutions for a class of nonlinear systems,

J. Nanchang Univ. (Nature Science) 44 (2020), no. 6, 529–533. https://doi.org/10.
13764/j.cnki.ncdl.2020.06.004

Huabin Chen

Department of Mathematics
School of Mathematics and Computer

Nanchang University

Nanchang, 330031, P. R. China
Email address: chb 00721@126.com

Qunjia Wan
Department of Mathematics

School of Mathematics and Computer

Nanchang University
Nanchang, 330031, P. R. China

Email address: wan 0617@126.com

https://doi.org/10.1016/j.cam.2007.08.022
https://doi.org/10.1016/j.amc.2008.11.009
https://doi.org/10.1007/s11432-018-9755-7
https://doi.org/10.1016/j.jmaa.2005.05.026
https://doi.org/10.1016/j.spl.2008.10.016
https://doi.org/10.1016/j.jmaa.2006.09.020
https://doi.org/10.1016/j.sysconle.2010.01.004
https://doi.org/10.1137/070697021
https://doi.org/10.1137/070697021
https://doi.org/10.1016/j.na.2014.05.004
https://doi.org/10.1007/s11425-012-4553-1
https://doi.org/10.1007/s11425-012-4553-1
https://doi.org/10.1016/j.physleta.2006.05.090
https://doi.org/10.1016/j.physleta.2006.05.090
https://doi.org/10.13764/j.cnki.ncdl.2020.06.004
https://doi.org/10.13764/j.cnki.ncdl.2020.06.004

