• 제목/요약/키워드: Exchange-biased coupling

검색결과 13건 처리시간 0.019초

Study of the Magnetization Reversal Behavior of exchange-Biased System Using Polarized Neutron Reflectometry

  • Park, Sung-Kyun;Kim, Ki-Yeon;Kim, Ji-Wan;Choi, Hyeok-Cheol;Teichert, A.;You, Chun-Yeol;Shin, Sung-Cheol;Lee, Jeong-Soo;Fitzsimmons, M.R.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2011년도 임시총회 및 하계학술연구발표회
    • /
    • pp.3-3
    • /
    • 2011
  • Since the first discovery of exchange anisotropy on Co/CoO system[1], there have been numerous studies to explore the physical origin of exchange-biased system[2,3]. In this presentation, we report that how the polarized neutron reflectomery can be applied to study the magnetization reversal behavior of the exchange biased system. As an example, the detailed magnetization reversal mechanism of the exchange-biased Py(30 nm)/FeMn (0, 15, 30 nm)/CoFe(30 nm) trilayers was studied and found that the 15 nm antiferromagnetic FeMn layer mediates the magnetization reversal behaviors of both Py and CoFe layers through interlayer exchange bias coupling. We also update the current activities in polarized neutron reflectometer in HANARO.

  • PDF

Temperature Dependence of Exchange Coupling on Magnetic funnel Junctions

  • Hu, Yong-Kang;Kim, Cheol-Gi;Stobiecki, Tomasz;Kim, Chong-Oh;Hong, Ki-Min
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.32-35
    • /
    • 2003
  • Magnetic funnel Junctions (MTJs) were fabricated on thermally oxidized Si (100) wafers using DC magnetron sputtering. The film Structures were Ta(50 ${\AA}$)/CU(100 ${\AA}$)$Ni_{80}Fe_{20}(20 $ ${\AA}$)/Cu(50 ${\AA}$)/$Mn_{75}Ir_{25}(100 $ ${\AA}$)/$Co_{70}Fe_{30}(25$ ${\AA}$)/Al-O(15 ${\AA}$)/$Co_{70}Fe_{30}(25 $ ${\AA}$)/$Ni_{80}Fe_{20}(t)/Ta(50 $ ${\AA}$), with t=0 ${\AA}$, 100 and 1000 ${\AA}$, respectively. X-ray diffraction has shown improvement of (111) texture of IrMn$_3$ and Cu by annealing. The exchange-biased energy is almost inversely proportional to temperature. The difference between the coercivity H$_c$ and the exchange biased field H$_E$ for t = 0 $_3$ sample is smaller than that for t = 1000 ${\AA}$. For the pinned layer, the decreasing rate of the coercivity with the temperature is higher compared to that of the exchange field, but variation of H$_c$ is similar to that of the exchange field for free layer.

Interlayer and Interfacial Exchange Coupling of IrMn Based MTJ

  • Wrona, J.;Stobiecki, T.;Czapkiewicz, M.;Kanak, J.;Rak, R.;Tsunoda, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • 제9권2호
    • /
    • pp.52-59
    • /
    • 2004
  • As deposited and annealed MTJs with the structure of $Ta(5 nm)/Cu(10 nm)/Ta(5 nm)/Ni_{80}Fe_{20}(2 nm)/Cu(5 nm)/ Ir_{25}Mn_{75}(10 nm)/Co_{70}Fe_{30}(2.5 nm)/Al-O/Co_{70}Fe_{30}(2.5nm)/Ni_{80}Fe_{20}(t)/Ta(5nm)/Ni_{80}Fe_{20}(t)/Ta(5 nm)$, where t=10, 30, 60 and 100 nm were characterized by XRD and magnetic hysteresis loops measurements. The XRD measurements were done in grazing incidence $(GID scan-2{\theta})$ and ${\theta}-2{\theta}$ geometry, by rocking curve $(scan-{\omega})$ and pole figures in order to establish correlation between texture and crystallites size and magnetic parameters of exchange biased and interlayer coupling. The variations of shifting and coercivity field of free and pinned layers after annealing in $300^{\circ}C$ correlate with the improvement of [111] texture and grains size of $Ni_{80}Fe_{20}$ and $Ir_{25}Mn_{75}$ respectively. The exchange biased and the coercivity fields of the pinned layer linearly increased with increasing grain size of $Ir_{25}Mn_{75}$, The reciprocal proportionality between interlayer coupling and coercivity fields of the free layer and grain size of $Ni_{80}Fe_{20}$ was found. The enhancement of interlayer coupling between pinned and free layers, after annealing treatment, indicates on the correlated in-phase roughness of dipolar interacting interfaces due to increase of crystallites size of $Ni_{80}Fe_{20}$.

NiO/NiFe/Cu/NiFe 스핀-밸브 샌드위치의 자기저항 특성 (Magneto resistance in NiO/NiFe/Cu/NiFe spin-valve Sandwiches)

  • 김재욱
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권10호
    • /
    • pp.1016-1021
    • /
    • 1997
  • Magneto resistance properties in spin-valve sandwiches with various thickness of nanmagnetic layer in contact with the ferromagnetic NiFe film were investigated. The NiFe layer in contact with the NiO film was pinned by strongly exchange-biased coupling and the free NiFe layer at the film surface induced a sharp change in the magnetoresistance at -5~15Oe due to small coercivity. The NiO/NiFe/Cu/NiFe film showed a magnetoresistance ratio in the range of 2.3~2.9% and a field sensitivity above 2.2%/Oe with various of nonmagnetic layer. The NiO/NiFe/Cu/NiFe film of the field sensitivity above 2.2%/Oe suggests stang possibility of magnetic sensor matter.

  • PDF

IrMn 교환결합층을 갖는 스핀밸브막에서의 열적안정성과 자구구조 관찰 (Thermal Stability and Domain Structure in Spin Valve Films with IrMn Exchange Biased Layers)

  • 이병선;정정규;이찬규;구본흔;야스노리 하야시
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.94-100
    • /
    • 2004
  • We have investigated the magnetic domain structure and the thermal stability of magnetotransport properties of IrMn biased spin-valves containing Co, CoFe and NiFe. The magnetic domain structures were imaged using a magneto-optical indicator film(MOIF) technique. To investigate the thermal stability, magnetoresistance(MR) was measured at annealing temperature(TANN) and room temperature($T_{RT}$) followed by the annealing. Domain imaging reveal that the increase of annealing temperature led to changes in the exchange coupling between the two ferromagnet(FM) layers through nonmagnetic layer rather than between FM and antiferromagnet. unlike the NiFe biased IrMn spin valve with large domains, MOIF pictures of Co and CoFe biased IrMn spin valve structures show the formation of many small microdomains. The magnetic structure, as revealed by the domain images, appeared unchanged while the MR dropped dramatically. From the combined giant magnetoresistance(GMR) and MOIF results, it was apparent that the decrease of MR ratio was not related to the spin valve magnetic structure up to about $350^{\circ}C$($T_{RT}$ ).

Cross Type Domain in Exchange-Coupled NiO/NiFe Bilayers

  • Hwang, D.G;Kim, J.K;Lee, S.S;Gomez, R.D
    • Journal of Magnetics
    • /
    • 제7권1호
    • /
    • pp.9-13
    • /
    • 2002
  • The dependences of microscopic magnetic domain on film thickness in unidirectional and isotropic exchange-coupled NiO/NiFe bilayers were investigated by magnetic force microscopy to better understand for exchange biasing. As NiO thickness increases, microscopic domain structure of unidirectional biased film changed to smaller and more complicated domains. However, for isotropic-coupled film a new cross type domain appeared with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing fields and the fact that the domain was originated by the strongest exchange coupling region was confirmed from the dynamic domain configuration during a magnetization cycle.

Computer Simulation of Switching Characteristics and Magnetization Flop in Magnetic Tunnel Junctions Exchange Biased by Synthetic Antiferromagnets

  • Lim, S.H.;Uhm, Y.R.
    • Journal of Magnetics
    • /
    • 제6권4호
    • /
    • pp.132-141
    • /
    • 2001
  • The switching characteristics and the magnetization-flop behavior in magnetic tunnel junctions exchange biased by synthetic antiferromagnets (SyAFs) are investigated by using a computer simulations based on a single-domain multilayer model. The bias field acting on the free layer is found to be sensitive to the thickness of neighboring layers, and the thickness dependence of the bias field is greater at smaller cell dimensions due to larger magnetostatic interactions. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy. When the cell dimensions are small and the synthetic antiferromagnet is weakly, or not pinned, the magnetization directions of the two layers sandwiching the insulating layer are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal magneto resistance (MR) change from the high-MR state to zero, irrespective of the direction of the free-layer switching. The threshold field for magnetization-flop is found to increase linearly with increasing antiferromagnetic exchange coupling in the synthetic antiferromagnet. Irrespective of the magnetic parameters and cell sizes, magnetization flop does not exist near zero applied field, indicating that magnetization flop is driven by the Zeeman energy.

  • PDF

Switchable Uncompensated Antiferromagnetic Spins: Their Role in Exchange Bias

  • Lee, Ki-Suk;Kim, Sang-Koog;Kortright J.B.;Kim, Kwang-Youn;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제10권1호
    • /
    • pp.36-39
    • /
    • 2005
  • We report element-resolved and interface-sensitive magnetization reversals investigated from an oppositely exchange-biased NiFe/FeMn/Co structure by employing soft x-ray resonant Kerr rotation measurements. We have found not only switchable uncompensated antiferromagnetic regions with its sizable thicknesses at both interfaces of the FeMn layer but also their strong coupling to the individual ferromagnetic layers. These experimental results provide a better insight into experimentally observed reductions in exchange-bias field on the basis of an interface-proximity model proposed in this work.

Bistable Domain Wall Configuration in a Nanoscale Magnetic Disc: A Model for an Inhomogeneous Ferromagnetic Film

  • Venus D.
    • Journal of Magnetics
    • /
    • 제10권3호
    • /
    • pp.113-117
    • /
    • 2005
  • Some polycrystalline ferromagnetic mms are composed of continuously connected nanometer scale islands with random crystallite orientations. The nanometer perturbations of the mm introduce a large number of nearly degenerate local field configurations that are indistiguishable on a macroscopic scale. As a first step, this situation is modelled as a thin ferromagnetic disc coupled by exchange and dipole interactions to a homogeneous ferromagnetic plane, where the disc and plane have different easy axes. The model is solved to find the partial $N\acute{e}el$ domain walls that minimize the magnetic energy. The two solutions give a bistable configuration that, for appropriate geometries, provides an important microsopic ferromagnetic degree of freedom for the mm. These results are used to interpret recent measurements of exchange biased bilayer films.

Multilevel Magnetization Switching in a Dual Spin Valve Structure

  • Chun, B.S.;Jeong, J.S.
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.328-331
    • /
    • 2011
  • Here, we describe a dual spin valve structure with distinct switching fields for two pinned layers. A device with this structure has a staircase of three distinct magnetoresistive states. The multiple resistance states are achieved by controlling the exchange coupling between two ferromagnetic pinned layers and two adjacent anti-ferromagnetic pinning layers. The maximum magnetoresistance ratio is 7.9% for the current-perpendicular-to-plane and 7.2% for the current-in-plane geometries, with intermediate magnetoresistance ratios of 3.9% and 3.3%, respectively. The requirements for using this exchange-biased stack as a three-state memory device are also discussed.