DOI QR코드

DOI QR Code

Temperature Dependence of Exchange Coupling on Magnetic funnel Junctions

  • Hu, Yong-Kang (Department of Materials Engineering, Chungnam National University) ;
  • Kim, Cheol-Gi (Department of Materials Engineering, Chungnam National University) ;
  • Stobiecki, Tomasz (Department of Electronics, University of Mining and Metallurgy) ;
  • Kim, Chong-Oh (Department of Materials Engineering, Chungnam National University) ;
  • Hong, Ki-Min (Department of Physics, Chungnam National University)
  • Published : 2003.03.01

Abstract

Magnetic funnel Junctions (MTJs) were fabricated on thermally oxidized Si (100) wafers using DC magnetron sputtering. The film Structures were Ta(50 ${\AA}$)/CU(100 ${\AA}$)$Ni_{80}Fe_{20}(20 $ ${\AA}$)/Cu(50 ${\AA}$)/$Mn_{75}Ir_{25}(100 $ ${\AA}$)/$Co_{70}Fe_{30}(25$ ${\AA}$)/Al-O(15 ${\AA}$)/$Co_{70}Fe_{30}(25 $ ${\AA}$)/$Ni_{80}Fe_{20}(t)/Ta(50 $ ${\AA}$), with t=0 ${\AA}$, 100 and 1000 ${\AA}$, respectively. X-ray diffraction has shown improvement of (111) texture of IrMn$_3$ and Cu by annealing. The exchange-biased energy is almost inversely proportional to temperature. The difference between the coercivity H$_c$ and the exchange biased field H$_E$ for t = 0 $_3$ sample is smaller than that for t = 1000 ${\AA}$. For the pinned layer, the decreasing rate of the coercivity with the temperature is higher compared to that of the exchange field, but variation of H$_c$ is similar to that of the exchange field for free layer.

Keywords

References

  1. J. Magn. Magn. Mater. v.139 T. Miyazaki;N. Tezuka https://doi.org/10.1016/0304-8853(95)90001-2
  2. Phys. Rev. Lett. v.74 J. S. Moodera;L. R. Kinder;T. M. Wong;R. Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  3. J. Appl. Phys. v.85 S. S. P. Parkin;K. P. Roche;M. G. Samant;P. M. Rice;R. B. Beyers;R. E. Scheuerlein;E. J. O'Sullivan;S. L. Brown;J.Bucchigano;D. W. Abraham;Yu Lu;M. Rooks;P. L. Trouiloud;R. A. Waner;W. J. Gallagher https://doi.org/10.1063/1.369932
  4. Appl. Phys. Lett. v.80 R. Richter;L. Bar;J. Wecker;G. Reiss https://doi.org/10.1063/1.1449536
  5. J. Appl. Phys.;J. Appl. Phys. v.52;53 C. Tsang;N. Heiman;K. Lee;C. Tsang;K. Lee https://doi.org/10.1063/1.328970
  6. Phys. Rev. B. v.60 M. D. Stiiles;R. D. McMichael https://doi.org/10.1103/PhysRevB.60.12950
  7. Phys. Rev. v.96 M. A. Ruderman;C. Kittel https://doi.org/10.1103/PhysRev.96.99
  8. C. R. Acad. Sci. v.255 L. Neel https://doi.org/10.1103/PhysRev.96.99
  9. J. Appl. Phys. v.91 C. Lee;J. A. Bain;S. Chu;M. E. McHenry https://doi.org/10.1063/1.1451598
  10. Acta Phys. Polon.(A) v.97 F. Stobiecki;T. Stobiecki;B. Ocker;W. Mass;W. Powroznik;A. Paja;C. Loch;K. Roell https://doi.org/10.1063/1.1451598
  11. Appl. Phys. Lett. v.80 M. Tsunoda;K. Nishikawa;S.Ogata;M. Takahashi https://doi.org/10.1063/1.1475363
  12. J. Appl. Phys. v.87 M. Tsunoda;Y. Tsuchiya;T. Hashimoto;M. Takahashi https://doi.org/10.1063/1.373081
  13. J. Appl. Phys. v.87 G. Anderson;Y. Huai;L. Miloslawsky https://doi.org/10.1063/1.372907
  14. J. Appl. Phys. v.87 M. Tsunoda;Y. Tsuchiya;T. Hashimoto;M. Takahashi https://doi.org/10.1063/1.373081
  15. M. Tsunoda, Y. Tsuchiya, T. Hashimoto, and M. Takahashi, J. Appl. Phys. 87, 4375 (2000). https://doi.org/10.1063/1.373081