• Title/Summary/Keyword: Excavator cabin

Search Result 19, Processing Time 0.039 seconds

A Study on Air-Conditioning System for Excavator using Forced Exhaust (강제배기를 이용한 굴삭기 공기조화 시스템에 관한 연구)

  • Hwang, J.H.;Jeong, C.S.;Ko, J.H.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • The excavator is used in a variety of construction environments. There are many kinds of risk like falling rocks or harmful dust. The excavator cabin protects the operator not only from these harmful environments but also provides a comfortable working environment. By the way, the excavator cabin consumes a lot of energy for cabin air conditioner. For this reason, the research is required to reduce energy consumption. This study suggests the air conditioning system for excavator using forced exhaust. First, the forced exhaust system simulated by AMESim tool and surveyed the applicability. Using AMESim simulation, it was investigated the effect of cabin inside temperature by intake flow rate and intake air temperature. The experiment executed using the 1.5 ton excavator and field tested according to the intake flow rate. Finally, verified the applicability on the air conditioning system for excavator using forced exhaust.

Excavator cabin modeling for noise analysis using SEA (SEA 를 이용한 굴삭기 차실 소음 모델 개발)

  • Kang, Junghwan;Park, Soodong;Kwak, Hyungtaek;Kim, Jooho;Kim, Seongjae;Kim, Indong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.156-158
    • /
    • 2014
  • The interior noise of an excavator cabin is important factor related to operation efficiency. For analyzing the cabin air-borne sound, the SEA cabin model was developed using VA One. Analysis result using measured surface SPL of cabin was compared with test data. And the noise reduction guide of cabin was suggested with contribution and sensitivity analysis results of major design variables using developed SEA analysis.

  • PDF

Estimation of Noise in and out the Cabin of Zero Tail Type Mini Excavator (소선회 미니굴삭기 운전실 내부 및 외부 소음평가)

  • Lee, Chong-Ho;Lee, Sung-Il;Kim, Cheol-Ho;Park, Jong-Sung;Sohn, Min-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.217-220
    • /
    • 2005
  • Zero tail type mini excavator is small in size and capacity compared with medium or large excavator. Therefore noise and heat problems are major issues in design due to layout of each components such as engine and hydraulic module. It is necessary to assure reduction of noise and vibration in construction machine, due to be enforced regulation for high noise construction machinery at home and abroad. The objective of this study is to provide basic data which is apply to predict noise effect in detail design stage by estimating noise of cabin for zero tail type mini excavator.

  • PDF

An experimental study about the sound insulation of the cabin for the zero tail type mini excavator (소선회 미니굴삭기 캐빈의 차음효과 분석)

  • Lee, Chong-Ho;Kim, Cheol-Ho;Park, Jong-Sung;Sohn, Min-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.292-295
    • /
    • 2006
  • Dimension and capacity of the zero tail type mini excavator are small as compared with medium or large excavators. Therefore, problems of the noise and the heat are major issues in design due to layout of each component such as the engine and the hydraulic module. It is necessary to reduce the noise and the vibration of construction machine, due to be enforced regulation for high noise construction machinery in the world. The objective of this study is to provide basic data which is apply to predict noise effect in detail design stage by estimating noise of cabin for zero tail type mini excavator.

  • PDF

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.802-808
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

Experimental Study for Construction Equipment's Cabin Noise Control (건설장비 캐빈 저소음화를 위한 시험적 연구)

  • Lee, Tae-Kyoung;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.84-89
    • /
    • 2009
  • In this paper, the experimental study on the identification of noise sources and noise transmission paths was carried out for the cabin noise control of construction equipment. In order to investigate noise and vibration characteristics of cabin structure, sound absorption, transmission, and radiation tests were performed using cabin assembly models. The noise/vibration source levels were obtained from the real cabins of wheel loader and excavator. Using transfer functions of cabins and real cabins' source data, cabin noise was decomposed into airborne and structureborne noise transmissions. Finally noise sources and major transmission paths were successfully identified for wheel loader and excavator's cabins.

  • PDF

Development of a PC-based Excavator Simulator for Operator Training (운전자 교육을 위한 PC 기반의 굴삭기 시뮬레이터의 개발)

  • 한경숙;황세훈
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.1
    • /
    • pp.83-91
    • /
    • 2000
  • Vehicle simulators provide an effective and safe environment for training operators. Many vehicle simulators have been developed but only a few have reached the stage of widely available tools; these tools are usually expensive and run on workstations only We have developed a low-cost, PC-based excavator simulator for training operators. Currently the simulator is dedicated to operating the boom, Em, bucket, and driver's cabin for digging by the action of the operator on two joysticks. This paper presents the implementation of the excavator simulator and some implementation results.

  • PDF

Dynamic Model Development and Simulation of Crawler Type Excavator (크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션)

  • Kwon, Soon-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF

Driving and Swing Analysis of a Crawler Type Construction Equipment Using Flexible Multibody Dynamics (탄성 다물체 해석기법을 이용한 크롤러형 건설장비의 주행 및 선회 동특성 해석)

  • 김형근;서민석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • A tool for the dynamic simulation and design technique of the excavator plays an important role in the prediction of dynamic behavior of the excavator in the initial design stage. In this paper, a flexible multibody dynamic analysis model including track of the crawler type excavator is developed using DADS and ANSYS. Through the driving simulation of the excavator travelling over rough road track, frequency characteristics of the upper frame and cabin are obtained, and the reaction forces acting on the track rollers are also presented for the fatigue life estimation. The effect of boom vibration modes on the joint reaction forces and accelerations is presented from the swing simulation.

  • PDF

Development of Viscous Cabin Mount for Excavator (액체봉입형 Viscous 굴삭기 Cabin Mount 개발)

  • 김원영;전범석;박외경;강하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • Samsung Ltd. has developed a new-type cab mount for specific use on construct ion machinery subjected to strong vibration and multi-directional impact force. These all make it possible to achieve an excellent damping effect over a wide frequency range against large amplitude vibration as well as excellent insulation against small-amplitude vibration. This new mount make lower vibration and noise levels while increasing riding comfort at the same time. Characteristics of Cab mount were optimized through computer simulation, advanced bench testing, ODS testing, and a real equipment offroad testing.

  • PDF