• 제목/요약/키워드: Exact Riemann Solver

검색결과 12건 처리시간 0.038초

공기-물 이상매질 충격파관 문제에 대한 정확한 Riemann 해법 (EXACT RIEMANN SOLVER FOR THE AIR-WATER TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.365-367
    • /
    • 2010
  • In this paper, we presented the exact Riemann solver for the air-water two-phase shock tube problems where the strength of the propagated sock wave is moderately weak. The shock tube has a diaphragm in the middle which separates water medium in the left and air medium in the right. By rupturing the diaphragm, various waves such as rarefaction wave, shock wave and contact discontinuity are propagated into water and air. Both fluids are treated as compressible, with the linearized equations of state. We used the isentropic relations for the air and water assuming a weak shock wave. We solved the shock tube problem considering a high pressure in the water and a low pressure in the air. The numerical results cleary showed a left-traveling rarefaction wave in the water, a right-traveling shock wave in the air, and the right-traveling material interface.

  • PDF

압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법 (EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

계단을 지나는 천수 흐름의 모의에서 내부 경계조건으로서 정확해의 부여에 관한 연구 (A Study on Imposing Exact Solutions as Internal Boundary Conditions in Simulating Shallow-water Flows over a Step)

  • 황승용
    • 대한토목학회논문집
    • /
    • 제34권2호
    • /
    • pp.479-492
    • /
    • 2014
  • 이 연구에서는 계단과 같이 불연속 횡단 구조물을 지나는 천수 흐름에 대해 내부 경계조건으로서 정확해를 부여하는 기법을 제안하였다. 제안된 기법의 검토를 위해 MUSCL이 적용된 HLLL 근사 Riemann 해법을 이용하였다. 계단을 지나는 천수 흐름에 대한 다양한 문제에서 모의 결과는 정확해와 잘 일치하였다. 또한, 계단에서 댐 붕괴 실험 및 급경사 수로 실험의 결과와 부합되었다. 개발된 모형으로 낙차공과 같이 불연속 바닥을 지나는 천수 흐름에 대해 별도의 수위-유량 관계나 지형의 완화 없이 모의가 가능하다. 향후, 계단에 의한 흐름 저항과 수맥에 의한 에너지 손실에 대해 적절한 평가가 이루어진다면, 보나 옹벽(강변 도로)과 같은 불연속 지형을 넘나드는 천수 흐름에 대한 수치모의가 가능할 것으로 기대된다.

Riemann 해법을 이용한 1차원 개수로 수리해석 - 자연하도 적용 (One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver - Application for Natural River)

  • 김지성;한건연
    • 한국수자원학회논문집
    • /
    • 제42권4호
    • /
    • pp.271-279
    • /
    • 2009
  • 본 연구는 단순한 직사각형 하도에서 발생한 댐 붕괴 및 홍수전파 등에서 만족스러운 결과를 보였던 Riemann 근사해법을 이용한 1차원 유한체적기법을 불규칙한 하도형상의 자연하도에 적용하기 위하여 새로운 기법을 개발하는 것이 목적이다. 이를 위하여 자연하천 단면을 등가의 직사각형 단면으로 변환하는 개념을 도입하였으며, 그 결과, 운동량방정식이 수정되었다. 새롭게 개발된 기법을 정확해가 존재하는 삼각형 단면하도의 댐 붕괴 흐름에 적용하고 그 결과를 비교함으로써, 기법의 정확성 및 적용성이 검증되었다. 단면의 형상 및 단면간 거리가 균일하지 않는 자연하도에 적용한 결과는 실측수위와 비교하여 홍수파의 전파 양상, 도수의 발생 위치 및 크기, 그리고 전 구간에서의 최대 수위가 잘 일치함을 나타낸다. 본 연구결과로부터 기존의 균일한 단면을 사용하여 개발된 기법들을 복잡한 수치처리과정 없이 자연하천 단면에 직접 적용할 수 있을 것으로 판단된다.

발산형 바닥 경사 생성항의 재검토와 체적-수위 관계의 수정 (Review on the divergence form for bed slope source term and correction of the volume/free-surface relationship)

  • 황승용
    • 한국수자원학회논문집
    • /
    • 제50권5호
    • /
    • pp.289-302
    • /
    • 2017
  • 발산형 바닥 경사 생성항(DFB, Divergence Form for Bed slope source term)을 엄밀하게 유도하였으며, DFB 중에서 격자의 변에서 평균 수심을 이용하는 mDFB의 오차를 명백하게 입증하였다. 또한, DFB 기법은 바닥 경사 생성항에 대해 정확한 방법임을 밝혔다. 완전히 잠기기 않은 격자에 대한 기존의 체적-수심 관계의 오류를 수정하였으며, C-특성의 충족을 위해 완전히 잠기지 않은 변에 대한 처리가 필요함을 검토하였다. 이 연구를 통해 근사 Riemann 해법으로 천수방정식을 해석할 때 보다 정확한 수단을 제공할 수 있을 것으로 기대한다.

Riemann 해법을 이용한 1차원 개수로 수리해석Ⅰ: 모형 개발 (One-dimensional Hydraulic Modeling of Open Channel Flow Using the Riemann Approximate Solver I : Model Development)

  • 김지성;한건연
    • 한국수자원학회논문집
    • /
    • 제41권8호
    • /
    • pp.761-772
    • /
    • 2008
  • 본 연구의 목적은 수공학 분야에서 수치해석이 난해한 문제를 해결하기 위한 모형을 개발하고, 해석해가 존재하는 다양한 수치실험, 즉 하상과 하폭이 함께 변하는 점변부정류 조건에서의 검증, 하상경사가 변화하는 세가지 정상상태 조건의 문제, 그리고 해석해가 있는 마찰하상에 적용함으로써 개발된 모형의 적용성을 검증하기 위한 것이다. 모형의 지배방정식은 보존 법칙을 만족하는 Saint-Venant 적분형 방정식이며, Riemann 해법에 의한 유한체적법이 사용되었다. 질량 및 운동량의 흐름율 계산에 HLL Riemann 근사해법이 사용되었고, 시간-공간에서 2차정확도를 위하여 MUSCL-Hancock 기법이 사용되었다. 본 연구에서는 비선형의 흐름율과 생성항과의 균형을 위하여, 중력과 흐름방향 하폭의 변화로 인한 정수압력에 의한 생성항을 차분하는 새롭고 간편한 기법을 소개하였다. 수치실험 모의결과는 개발된 모형이 생성항을 포함한 다양한 흐름조건에서 정확하고, 견고하며, 매우 안정적임을 보여주고, 또한 수공학 분야에서 일차원 적용에 적합한 모형임을 보여준다.

천수방정식에 대한 HLLL 근사 Riemann 해법의 적용 (An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations)

  • 황승용;이삼희
    • 대한토목학회논문집
    • /
    • 제32권1B호
    • /
    • pp.21-27
    • /
    • 2012
  • T. Linde가 제안한 HLLL 기법에서는 일반화된 엔트로피 함수의 도입으로 중앙파가 평가되므로 모든 파속이 초기 상태로부터 결정된다. HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않으므로 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. 이 연구에서는 생성항이 없는 1차원 천수방정식에 농도와 관련된 보존변수를 추가한 지배방정식에 대해 총 에너지를 일반화된 엔트로피 함수로 두고 HLLL 기법을 적용하여 모형을 구성하였다. 정확해가 알려진 세 경우에 대해 모의한 결과, 1차 정확도 수치해의 한계에도 불구하고, 대체로 정확해와 잘 일치하였다. HLLL 기법은 그 외 HLL 형 기법에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 경우에서 그 전선이 비교적 정확하게 포착되었다. 다만, 그 외 기법에 비해 계산 시간이 더 오래 걸리는 단점이 드러났다.

비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석 (Calculations of 3D Euler Flows around an Isolated Engine/Nacelle)

  • 김수미;양수석;이대성
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

불연속 지형을 지나는 천수 흐름의 해석을 위한 수심적분 모형에 대한 새로운 기법 (A Novel Scheme to Depth-averaged Model for Analyzing Shallow-water Flows over Discontinuous Topography)

  • 황승용
    • 대한토목학회논문집
    • /
    • 제35권6호
    • /
    • pp.1237-1246
    • /
    • 2015
  • 불연속 지형을 지나는 천수 흐름의 해석에서 흐름률을 정확하게 계산하기 위하여 계단에 의한 흐름 저항이 지배적인 계단 전면과 그 영향이 비교적 덜한 계단의 윗부분을 구분하여 접근하는 새로운 기법을 제안하였다. 새로운 기법에 의한 모의 결과는 정확해, 가상의 문제에 대한 3차원 모의 결과, 그리고 실험 결과와 대체로 잘 일치하였다. 이 연구에서 개발된 기법으로 불연속 하천구조물을 넘나드는 천수 흐름에 대한 직접 해석이 가능해졌다. 보나 옹벽(강변 도로)의 월류 양상 그리고 불연속 지형으로 이루어진 도심에서 범람에 따른 침수 구역의 정확한 산정에 개발된 기법의 적용이 기대된다.