• Title/Summary/Keyword: Euler-Euler approach

Search Result 142, Processing Time 0.028 seconds

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

Nonlinear dynamics of SWNT reinforced Aluminium alloy beam

  • Abdellatif Selmi;Samy Antit
    • Steel and Composite Structures
    • /
    • v.51 no.4
    • /
    • pp.407-416
    • /
    • 2024
  • The main objective of the present paper is to investigate the nonlinear vibration of buckled beams fixed at both ends and made of Aluminium allay (Al-alloy) reinforced with randomly dispersed Single Walled Carbon Nanotube (SWNT). The Mori-Tanak (M-T) micromechanical approach is selected to predict the homogenized material properties of the beams. The differential equation of motion governing the nonlinear behavior of the Euler-Bernoulli homogeneous beam is solved using an analytical method. The influences of diverse parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency are studied.

FLUID-BODY INTERACTION ANALYSIS OF FLOATING BODY IN THREE DIMENSIONS (3차원 부유체의 유체-물체 연성해석)

  • Go, G.S.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2015
  • Fluid-body interaction analysis of floating body with six degree-of-freedom motion is presented. In this study, three-dimensional incompressible Navier-Stokes equations are employed as a governing equation. The numerical method is based on a finite-volume approach on a cartesian grid together with a fractional-step method. To represent the body motion, the immersed boundary method for direct forcing is employed. In order to simulate the coupled six degree-of-freedom motion, Euler's equations based on rigid body dynamics are utilized. To represent the complex body shape, level-set based algorithm is utilized. In order to describe the free surface motion, the volume of fluid method utilizing the tangent of hyperbola for interface capturing scheme is employed. This study showed three different continuums(air, water and body) are simultaneously simulated by newly developed code. To demonstrate the applicability of the current approach, two different problems(dam-breaking with stationary obstacle and water entry) are simulated and all results are validated.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams

  • Lim, C.W.;Li, C.;Yu, J.L.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.223-233
    • /
    • 2009
  • This paper presents a new nonlocal stress variational principle approach for the transverse free vibration of an Euler-Bernoulli cantilever nanobeam with an initial axial tension at its free end. The effects of a nanoscale at molecular level unavailable in classical mechanics are investigated and discussed. A sixth-order partial differential governing equation for transverse free vibration is derived via variational principle with nonlocal elastic stress field theory. Analytical solutions for natural frequencies and transverse vibration modes are determined by applying a numerical analysis. Examples conclude that nonlocal stress effect tends to significantly increase stiffness and natural frequencies of a nanobeam. The relationship between natural frequency and nanoscale is also presented and its significance on stiffness enhancement with respect to the classical elasticity theory is discussed in detail. The effect of an initial axial tension, which also tends to enhance the nanobeam stiffness, is also concluded. The model and approach show potential extension to studies in carbon nanotube and the new result is useful for future comparison.

The Numerical Simulation of the Pressure wave for G7 Test Train in the Tunnel (G7 시제 차량의 터널내부 압력파에 대한 수치 해석)

  • 권혁빈;김태윤;권재현;이동호;김문상
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • A numerical simulation has been performed to estimate the transient pressure variation in the tunnel when G7 test train passes through the test tunnel in the Kyoeng-Bu high-speed railway. A modified patched grid scheme is developed to handle the relative motion between a train and a tunnel. Also, a hybrid dimensional approach is proposed to calculate the train-tunnel interaction problem efficiently. An axi-symmetric unsteady Euler solve using the Roe's FDS is used for analyzing a complicated pressure field in tunnel during the test train is passing through the tunnel. Usually, this complex phenomenon depends ell the train speed, train length, tunnel length, blockage ratio between train and tunnel cross-sectional area, relative position between train and tunnel, etc. Therefore, numerical simulation should be done carefully in consideration of these factors. Numerical results in this study would be good guidance to make test plans, test equipments selection and to decide their measuring locations. They will also supply important information to the pressurization equipment for high-speed train.

Conception and Performance Analysis of Efficient CDMA-Based Full-Duplex Anti-collision Scheme

  • Cao, Xiaohua;Li, Tiffany
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.929-939
    • /
    • 2015
  • Ultra-high-frequency radio-frequency identification (UHF RFID) is widely applied in different industries. The Frame Slotted ALOHA in EPC C1G2 suffers severe collisions that limit the efficiency of tag recognition. An efficient full-duplex anti-collision scheme is proposed to reduce the rate of collision by coordinating the transmitting process of CDMA UWB uplink and UHF downlink. The relevant mathematical models are built to analyze the performance of the proposed scheme. Through simulation, some important findings are gained. The maximum number of identified tags in one slot is g/e (g is the number of PN codes and e is Euler's constant) when the number of tags is equal to mg (m is the number of slots). Unlike the Frame Slotted ALOHA, even if the frame size is small and the number of tags is large, there aren't too many collisions if the number of PN codes is large enough. Our approach with 7-bit Gold codes, 15-bit Gold codes, or 31-bit Gold codes operates 1.4 times, 1.7 times, or 3 times faster than the CDMA Slotted ALOHA, respectively, and 14.5 times, 16.2 times, or 18.5 times faster than the EPC C1 G2 system, respectively. More than 2,000 tags can be processed within 300 ms in our approach.

Exact natural frequencies of structures consisting of two-part beam-mass systems

  • Su, H.;Banerjee, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.551-566
    • /
    • 2005
  • Using two different, but related approaches, an exact dynamic stiffness matrix for a two-part beam-mass system is developed from the free vibration theory of a Bernoulli-Euler beam. The first approach is based on matrix transformation while the second one is a direct approach in which the kinematical conditions at the interfaces of the two-part beam-mass system are satisfied. Both procedures allow an exact free vibration analysis of structures such as a plane or a space frame, consisting of one or more two-part beam-mass systems. The two-part beam-mass system described in this paper is essentially a structural member consisting of two different beam segments between which there is a rigid mass element that may have rotatory inertia. Numerical checks to show that the two methods generate identical dynamic stiffness matrices were performed for a wide range of frequency values. Once the dynamic stiffness matrix is obtained using any of the two methods, the Wittrick-Williams algorithm is applied to compute the natural frequencies of some frameworks consisting of two-part beam-mass systems. Numerical results are discussed and the paper concludes with some remarks.

Dynamic Analysis of Constrained Mechanical System Moving on a Flexible Beam Structure(II) : Application (유연한 보 구조물 위를 이동하는 구속 기계계의 동력학 해석(II) : 응용)

  • Park, Chan-Jong;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.176-184
    • /
    • 2000
  • Recently, it becomes a very important issue to consider the mechanical systems such as high-speed vehicle and railway train moving on a flexible beam structure. Using general approach proposed in the first part of this paper, it tis possible to predict planar motion of constrained mechanical system and elastic structure with various kinds of foundation supporting condition. Combined differential-algebraic equations of motion derived from both multibody dynamics theory and Finite Element Method can be analyzed numerically using generalized coordinate partitioning algorithm. To verify the validity of this approach, results from simply supported elastic beam subjected to a moving load are compared with exact solution from a reference. Finally, parameter study is conducted for a moving vehicle model on a simply supported 3-span bridge.

  • PDF

Improved Trajectory Calculation on the Semi-Lagrangian Advection Computation (Semi-Lagrangian 이류항 계산의 추적법 개선)

  • Park, Su-Wan;Baek, Nak-Hoon;Ryu, Kwan-Woo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.419-426
    • /
    • 2009
  • To realistically simulate fluid, the Navier-Stokes equations are generally used. Solving these Navier-Stokes equations on the Eulerian framework, the non-linear advection terms invoke heavy computation and thus Semi-Lagrangian methods are used as an approximated way of solving them. In the Semi-Lagrangian methods, the locations of advection sources are traced and the physical values at the traced locations are interpolated. In the case of Stam's method, there are relatively many chances of numerical losses, and thus there have been efforts to correct these numerical errors. In most cases, they have focused on the numerical interpolation processes, even simultaneously using particle-based methods. In this paper, we propose a new approach to reduce the numerical losses, through improving the tracing method during the advection calculations, without any modifications on the Eulerian framework itself. In our method, we trace the grids with the velocities which will let themselves to be moved to the current target position, differently from the previous approaches, where velocities of the current target positions are used. From the intuitive point of view, we adopted the simple physical observation: the physical quantities at a specific position will be moved to the new location due to the current velocity. Our method shows reasonable reduction on the numerical losses during the smoke simulations, finally to achieve real-time processing even with enhanced realities.