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Abstract

The dynamic equations of robotic manipulators

can be derived from either Newton-Euler
equation or Lagrangian equation. Model
parameters which appear in the resulting

dynamic equation are the nonlinear funtions of
both the inertial parameters and the geometric
parameters of robotic  manipulators. The
identification of the model parameters is
important for advanced robot control. In the
previous methods for the identification of the
model parameters, the geometric parameters are
required to be predetermined, or the robotic
manipulators are required to follow some
special motions. In this paper, we propose an
approach to the identification of the model

parameters, in which prior knowledge of the
geometric parameters is not necessary. We show
that the estimation equation for the model

parameters can be formulated in an upper block
triangular form. Utilizing the special
structures, we obtain a simplified least-—square

estimation algorithm for the model parameter
identification. To illustrate the practical
use of our method, a 4DOF SCARA robot is
examined.
1. Introduction

Dynamic modelling of a given plant is
important for the control system design.
Dynamic equations of robotic manipulators with
serial links can be obtained by the
Newton-Euler method [18] or the
Lagrangian—-Euler method [15,22]. Efficient
programs for the symbolic generation of the
dynamic equations of the manipulators are now
available [8,13,16]. Various coefficients
appear in the resultant dynamic equations of
robotic manipulators. Identification of these
coefficients is important for advanced robot
control. In fact, many advanced control

schemes for robotic manipulator which have been
presented in the recent literature need the
information on either all or some of these
coefficients [4,7,11,14,17,19,20,21,23]. These
coefficients, which will be called model
parameters from now on, are the nonlinear
functions of the geometric parameters (the
constant parameters of the homogeneous
transformation matrices) and the inertial
parameters (mass, center of mass, and moments
of inertia of links). In this paper, we
consider the identification problem of these
model parameters.
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Most of the prior work addressed the
identification problem of the inertial
parameters under the condition that geometric
parameters are priorly known. In fact, the
geometric parameters can be seperately
identified through some calibration procedure
[5]. Unfortunately, these methods fail to
identify some of the inertial paraneters
because each robotic manipulator has its own

degree of freedom and hence the effects of some
inertial parameters on robot motions are
hidden. In [3], the unidentifiable inertial
parameters are characterized. In [2], all
inertial parameters could be seperately
identified by disassemblying robotic
manipulators into components and by applying a
two-wire suspension method. However, the
identification procedure involves much labor.
Furthermore, some parts of manipulators are
difficult to be disassembled.

The prior work closely related to our work
are [3,9,24]. The estimation methods proposed
in [3,24] can be used to identify the model
parameters when the geometric parameters are
pre—known. In [3] some experimental results
were also presented. In [9], the geometric
parameters need not to be known in advance.
However, manipulators are requried to follow
various predetermined motions. The success of
the approach depends highly on how closely the
manipulators can follow the predetermined
motions.

Our estimation algorithm for
parameters requires neither the
of the geometric parsmeters nor
motions. It was shown in [3] that the
estimation model for the inertial parameters
has an wupper block triangular form. We show
that the estimation model for the model
parameters also has an upper block triangular
form. We show that this special structure can
be utilized to get computationally simple
estimation algorithm for the model parameters.
Some simulation results for the case of 4DOF
SCARA robot are presented to 1illustrate the
practical use of our estimation method.

the model
pre—knowledge
any special

Finally, we introduce some notations
in section 2 and 3. For a function f :
D; f(x) denotes the first partial derivative of
f at x & RP with respect to the jth argument.
A column vector x with scalar components x;,i =
l,...,p is denoted by x 2 (%,,...,%p). A row
vector x with scalar components x;, i = 1,...,p

2 [x,... %p]. The tranpose of a

needed
rf ~ W7,

is denoted by x 2



vector x is denoted by ¥ The functions
f: rP - H", i=zl,...n. are linearly dependent on
RP if there are constants o ,i = 1,...,n, ( not
n
all zero ) such that X o f; (x) = 0, x & 7.
i=1
The functions £ R - R", i=1,...,n are

linearly dependent at each x & ®? if, for each

x & RP, there are constants a; (%), i =1,...,n,
n

(not all zero )} such that ooy (x)f (x) = 0.
i=1

It should be clear from these definitions that

the functions which are linearly independent at

each point are not necessarily linearly indepen—

dent on the whole domain.

2. Main Result

The Lagrangian formulation of the dynamic

equations of a system with n degree of freedom
is given [6] by

d

[ — D L(q,4) - D, L{q, &1 =

(2.1)
dt

T,

where,
q(t) & R': the generalized coordinate vector

of the system,

q(t) & R': the time derivative of q(t),

T (t) € R":the generalized force (or torque)

vector applied to the system,
:the Lagrangian function of the system
(= kinetic energy — potential energy).

L(q,q)

The Lagrangian function L of a robotic manipu-
lators with serial links can be written [22] as

3T, aTy

. n i i f TR
L(q,9) = % £ I I Trace( Ji ( Y Jq;a,
i=1 j=1 k=1 2d; d Uy
n
+ T mETE, (2.2)
i=1

where,

T, & 114” the homogeneocus transformation
matrix relating the coordinate frame
of the ith link to that of the 0th
11nk ( the base coordinate frame),

J & R : the pseudo inertia matrix of the
ith link,

g 2 [g g g 0] the gravity vector with
respect to the base coordinate frame,

B2 [k ¥ % 1) the position vector of
the center of the ith link mass with
respect to the ith coordinate frame,

m; : the mass of the ith link.

Here, the inertial para.meters are m; ,mx| s

ms_f; yIZ , Tixe 5 Tiwy yLiza o Ly s Live s Iixz , 1 =1,

S B Hence, the total number of the inertidl

parameters of a manipulator with n DOF is 10n.

For each i = 1,...,n, let
i “T 8T 1
Li(g,4) = % £ I Trace( I ( ) g
J=1 k=1 :q; 39,
N (2.3)
+om FTr

Then, the Lagrangian function L in (2.2) can be
written as
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n
L(qy‘ll) :.zi L, (Q)él) (2-4)
i=

For the notational convenience we assume that
all joint are rotational. However, it will be
clear from the developments that such an assum-
ption entails no loss of generality. We define
the geometric parameters d; ,a;, &; of the ith
link ag in Fig.l. Hence, the total number of
the geometric parameters of a manipulators with

n DOF is 3n. For notational convenience, we
write Vi 2 (mi ,III)?; ,mff; JMEZ; IIXX 3 Ii}')/ , liza »
I'-X)/ s Livz s Tixz ), Wi £ (di:ﬂisai)ai =lyeea,n.
et V.2 (V,..., W) and W & (W ,...,Wn).

The homogeneous transformation matrix A; re—

lating the coordinate frame of the ith link to
that of the (i—-1)th link is given [22] by
A
Ay = AC, (2.5)
wklere,
A, & Rot(z,y ,4; ), (2.6)
Gt 2 Trans(0,0,d;)Trans(a;,0,0)Rot(x;, o )
(2.7)
Namely, each A; can be factorized into two
matrices such that A; depends only on q; and G
depends only on the geometric parameters d,,a;,
a; of the ith link. By (2.5), T is then written
as
T, o= A Aye s oA - AGCAC,e s oA
ivl,...,n 2.8)

Therefore, we can mways find an 1nteger p, and

matrix functions T, : B — R™% and & : B — pfd

so that T; can be f‘a(‘torized in the form :
A
T, = T (9,50, q; )C W, 0., W) (2.9)
L; in (2.3) can be written as
i1 a%i N a%; .
L;(e,4) = ¥4 % I q q.Trace( g« ¥
J=1 k=1 39; 3y
+ T, (2.10)
Wi’}ere’ A AT . A
5 26 5¢ and r, & mGE (2.11)

From (2.9), (2.10) and (2. 11), we see that (1)

L; does not depend on 4,,4,,k = it+l, S0 and
(2) 1; is linear with respect to Ji and #, . By
Jotla Juosut il
P (l"w

Link n-l

Link -2

and

Fig.2 Kinematic Parameters q., d,, a,, oy,



these facts, it is always possible to find an
integer n;, functlons Fii R* = R and X :
R*** L R, j=1,...,n; such that L; can be
formulated in the form H

. ™
Li{a,q) = £
j:

Fii (@ o 0@a Qe R (VLWL W)

_

(2.12)

In particular, the Xjj are linear with respect

to V; . Consequently, L in (2.4) can be written
as
n n;
@@= T T Fi(q,e ), 58)0%) (U, ... W)
i=1l j=1
(2.13) .

Next, we rearrange the terms in (2. 13) as fol-
lows. For each 1 = 1,...,n, define L‘ by the
sum of all terms in (2 13) that depend on at
least one of q;, 4, but not on any of q,, qk,

k = i+1,..A,n; Let m; be the total numbgr of
the terms in L; . We denote the terms in L; by
F.. X Then,
PR |
L(2.4 oo, nomo,
D) = T L s TR (R (G )
PR P q, 9iq, ;)
A
Rig (Vi o W W oo, W) ) (2014)

The representation of each L can be further

simplified. If there is a term i X,J in L
such that for some constants oy (not all zero),
ﬁ‘ii _kf X ;'k , the term Fij XiJ is removed

from ﬁi wh11e the Ek Xm are replaced by

Ey (R + Ak xu ), respectively. If there is

a term ;; in L;  such that for some cons—

tants By ( not all zero), )2;5 = X A X,K ,the
k#j

term ﬁu X is removed from L, while the Fix Ri
are replaced by (Fm * Aix B )Xm ,respectively.
We assume that each i in (2.14) has been sim-
p11f1§d through the above procedure. Then, we

call Xi in (2.14) the model parameters. Then,
n

m 2 ¥ m is the total number of the model pa—
i=1

rameters. As will be seen later, m does not

necessarily represent the minimal number of

the model parameters for the determination of
the dynam1c .equation of a robotic manlpulator
Let B # (Fn,. JFim ), B2 (B ... .5,
%A (i ,... % )y and R2 (R ,.." %) Then,
(2.14) can be rewritten 1in a simpler form :

=4

Had) = x N CHP: a7
e

(2.15)
»wn)},

’CL;-'-

A
Xi(vi,"-’vﬂ)wla--.

What remains now is to show

.0, (2.16)
Let i be an integer such that 1

i £ n.
Tt can be easily shown that if q; #

=
0

A A
af 3Ty
)Tk (

agi =

(é;)lTrace( )T> 0,

2 q 3g;
(2.17)

k=1i,...,n,
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This implies that in (2.10), any term contain-—

ing (&;)* can not be cancelled out by any
other terms. In particular, there are functions
f; : Rl - R, x; : R = R such that a;; can be
written as

ay = (&7 £ (a,,--a0% (%) (2.18)
Due to the special forms of the F and the X
in (2.14), this implies that (E ¥ &  must
contain at least ai; . This proves (2.16).
As will be seen soon, rearrangement of the
Lagrangian function in the form (2.15) has

several advantages in simplifying the estima-
tion method of the model parameters.

Now, we formulate two kinds of 1dent1f1uat10n

models for the model parameters Let F2 (f, ,
JB) and R2 (X, ,...,%,). By (2.15), (2.1) can
be wrltten as
.. A
U(g,9,4) X = T, (2.19)
where,
" d A . A 1T
U(g,4,3) = [ — DyF(q,q) - D F(q,)]  (2.20)
dt
By the definition of the ﬁ;, we see that
A A
F; I F;
- = 0 and = 0, k = i+1,...,n,
9 L (2.21)
i=1,...,n
Consequently, U in (2.19) has the following
upper block triangular form :
FUn Uz eseseUn o %~ % 4
| [P | |
| 0 Uaz o o o oo Usn | | X, ) | Y |
| |1 | | |
[ . Froe [
[ . Pdoe =1« | (2.22)
[ . Flos [
I . Floe | [
. . [ [
| [ P | !
Lo . * o o o Upp 2 L Xp 4 Loy, J,
where, n
rod 3F; AT
Wi 2 | —(——) - { )
Ldt g gy <, %= T, (2.23)
When the geometrlc ﬁérameters w,, i=1,...,n

are known, the X“ are reduced to be the linear
functions of V;,...,Vn. In other words, there
is a upper block triangular matrix M such that

= MV. This with (2.22) shows that an identifi-
cation model for the inertial parameters also
has a upper block triangular form. Hence, when
the geometric parameters are known, our result
recovers the one in [3].

Usually m >n . From the aspect of compu—
tational load, it is desirable to make m_as small
as possible. We have already simplified L. ,i =

1,...,n to achieve a small m . However, m can
be further reduced by eliminating linearly
dependent columns and components from U and X,

respectively. The following simplification method
is a simple exten51on of the one used in [24].

Let Ui 2 (U ,...,U;; ), i = 1,...,n. Bach U
has m; column vectors denoted by Uf, k=1,...,m.
Let i be an integer such that 1 < i < n. If



there is a column vector Uf such that for some

constants ek ( not all zero ) U? = T oax UT
. k#J

on R*", the column U/ and the component Xjj

are eliminated from U; and X, respectively.

Then, the other components Xu , k # j in X are
replaced by Xie + a fi , respectively. After
all columns of U are made linearly independent
on R, all linearly dependent components are
eliminated from in the following way. Suppose
that some components of X are linearly dependent

on R®*", In tbis case, there is always a compo—
nent X;; in X such that for some constants B ,
k = j+l,...,m and Tpx , k = 1,...,mp, p = i+l,

.,n, ( not all zero ),

N m; R noome o,

Xij = ¥ BixXk + X X TPk ka,

k=j+1 p=i+l k=1 (2.24)
ve R, we r¥,

Then, Qu and U; are eliminated from Q; and U;,

respectively. while U, k = j+l1,...
k=1,...,m, p=i+l,...,n
US+ A and UE + 7pe U,
that the columns of 1 still remain linearly
independent on R¥Mafter such operations on U
and ¥ . Furthermore, the resulting identifica-
tion model preserves the upper block triangular
form. In fact, this simplification method leads
to the minimal number m(in some sense) of the
model parameters to be identified to determine
the dynamic equation of a given robotic mani-
pulator. We assume that (2.22) represents the
identification model obtained by the above
simplification procedure.

,mj and U:,
are replaced by
respectively. Note

The Xi; in (2.22) can be obtained by using the
least square method. The required measurement
data are the trajectories of q,q,q, and T.
While g,¢ can be directly measured, ¢, T should
be estimated in an indirect way. Suppose we have
N data points. FEach data point determines nume-—
rically U and T in (2.19), which will be

denoted by U(i), z (i), i =1,...,N. Then, X can
be estimated by
A A - A
X = @wn’' o, (2.25)
where,
- U(l) 4 - Y(1) =
A e | _—_— |
ué& | . | and Y £ | . | (2.28)
| | . |
L og(N)y - Looy(N) -
While the data of T can be easily estimated
from joint motor currents, the data of ¢ are
obtained by passing the data of § through a
band-limited differentiator [31'. When it is

desired to avoid the differentiation of §, the

following approach can be taken. Integrating
(2.19) from time t, to time t, , we see that
(2.22) still holds with
— eF; | 3F Mty SF; -7
R R T L e Ui A Y
Soagy Itet g |ty oy 343 =
Mt
vy o2 | T odt, (2.27)
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In this case, the data of g are not necessary.
Instead, integration of D,F(q,q) is required.
This integration approach was first considered
in [3] for load estimation. Choosing N diffe-

rent pairs (ti,t;), we can construct U and Y
required in (2.25).

The inverse of ﬁTﬁ (= wam is computationally
difficult when m is large. The following recur—
sive algorithm utilizing the special structure
of U in (2.22) may be useful for the reduction
of computational load.

A A A
i = WU Uy ) Uy (G - T U; K,
J=i+1 (2.28)
i=mn,(n-1),...,1.
where,
= U (1) 5
A | . i
Uy & |« 1,
| . |
GO
~ Y (1)
A 4 | v 2) | i=1, n
vio= o (2.29)
I . | J=1i,...,n
.
S Y (N)
In other words, the i;, i=1l,...,n are esti—

mated each by each in the reyersed order.
In (2.28), only the inverses of Uﬂ U; € MW
need to be computed.

The selection of data points is important for
the success of these algorithms. In both algo-
rithms (2.25) and (2.28), the condition :

A

Rank U;; = m;, 1 = 1,...,n. (2.30)
is necessary and sufficient for the existence
of the required inverses. If (2.30) is satisfied,
and no measurement and computational errors are
involved, these algorithms produce the true
value of the model parameters.

3. An Example

The 4DOF SCARA Robot shown in Fig.2 has 4 li-
nks. The first, second, and fourth links are
rotational while the third link is translational.
The first, third, and forth links are symmetric
about the x axis of the joint coordinate frame
while the second link is not symmetric about the
x axis of the joint coordinate frame. The kine-
matic parameters are given in Table.l.

Table.l Hinematic parameters of the robot in Fig.2
illnk\\\ e, oy Ay g ]
i 1 |0 ey b0 1 g l
{ 2 o 1 a0 | a |
li 3 | 0 ] 0 | 0 | a l}
l' 4 10 L0 1 0 ] ay )




And the pseudo inertia matrix J; 1is given by

=hizetlyythe

Iizy ]i:z mZ;
hizz—1 Lise
J:i — Iizy _‘_‘_fl—t— P le'yz . miﬂi
Lizs Lipa izet .g‘..,— i 3
mZ; my; miZ; m;
(3.1)

0. Xc\ 0 X' 01 4);(1
Yo
Y
Za Y‘ 2 ? Z;
054 <2.4
3,4
Zra

Fig.2 4DOF SCARA Robot and its coordinate frames

LtS—slnq;,C=cosq,1—1 .,4, and
g = 9.8(n/sed) Then, Lj , i <1,...,4 in
(2.3) are given as follows.

Li(@,@ = ¥4 (Tizz+ may ) (3.2)

Lz(‘l»'{l) = %f‘ll (Tagat m &| + III‘LE'I‘l + 2m;x,a_1)
+ Cp4% (mya,ay + mzxza,) 8,47
+ 4, 4, (Taeat mpar + 2m,%,22)
+ Cpd, d(mea a5 + mixla.) -
+ 1847 (Tg2,+ mpead +2m,%

1 y.l

qul q,m,Yy, 8y
Xy tg)
(3.3)
La(‘lyf‘l) %q. (I;gg"' m33| + miaz)
+ Cad2mgaja, + 1ds (Izza+ mza )
+ VQ; my + qumzg + q (‘Iz(]:s:é*mgaz )
+ ('zq' qzmga a5 (3.4)

La,d) = 444, (Izzz+ maa + mzal )
+ Cad® mya,ag + W4T (Igaat meag )
* Ay my o aumed + 4 Gallest meal )
+ CZQ. d.mea,az+ 1df T+ 4 qule=a
+4,4,T.. (3.5)

By the regrouping procedure suggested in sec—
tion 2, we obtain

A
= 4 d =
Ll - %ql iLZi*’ m,a,‘ + IJZE+ mea; + m,a,
+ 2m,RX,8; + Izgat mzaf®+ mya2 + T oz

+ moa? + m*az_ (3.6)
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A

Lz (quz + qlqz)(yzﬁz* mzaz ‘Zmzxzdz t lzaz
i omgaf + Taad m¢q*) + UL 2t 4,4,C4)
(m,‘a,a, + mpR,a,+ mza, a,+t m4_a,az)

— U[l S, + q'qz\ )m_ly a, (3.7)

A .

Ly = (1443+ q;8) (my+ mg) (3.8)

A » x ' . . M 9

Iq_ = (%Q4.+ quqf qltl4_)I‘f-ZE (3.9)
Note from (3.6) — (3.9) that

m = mg= mg= 1, my = 3, m=6 (3.10)
In this example, the simplification procedure
indicated in section 2 does not help to reduce
the m further. Hence, the minal number of the
model parameters to be identified is w = 6 and
the vector X of the model parameters is given
by

A A A A A

X2 (X, X, Xy Xy (3.11)
where,

”
)?, = Xu = Tyggtmal+ L.+ mzaf + maas

+ 2 myX,az + Tzga+ myaf + mya?
A tmal + mgal
2= (R 2 Xas) = ( lagg + mpas + 2m,%,a,
+ Izgg+ mpal + Tpaa+ meas , ma,8, + m,%,a,
tmyaa, tmes 8y, mY,a )
Xog = my+ my

fa= Xy = Igza

Flgza

21

(3.12)

The identification models for
meters is given by

these model para-

A
r U U O Uga ~ XM ~ Yo
f [ f | !
| 0 U 0 Uyl | fal | %
| (A | (3.13)
[ 0 Uz 0 | | X3 | Yz
| Pl | |
L 0 0 0 U44J [ Xa- L y4_.1
where, for the case of the first identifica-

tion model,

U" = 49, UH-_ UJA.-‘ chp U;j— C|3 g,
Upg = G+ &+ 4, (3.14)
Uiz= [ 4a .{_.251.‘.1;51." (:{:Sz't (2%1:,*” G20}

{24, 4,C,~ d2C,— (24, + 4,08} 1] (3.15)
Up= [ 4+ @, 0',Co+ 4382 -4, 52+ 4jCa ] (3.16)

and for the case of the second identification

model,

q ' ta ‘il ' t UI#—‘ ”14: q;;.' t, —
Uss = qt qsi te - g(tf t ),

{4, z+q+eltzv{q,+ d.t dgt 1ty
du
[ q,

=
=
i

(24, + 4,)C2 ~(24,+ 4,082 1 | &,
C’h cl _('LS:. ] ‘ ta
-l d. 4,Ca 4,82 1|t
[t [ta
+ [ 0 ' (q]qz,+ (1| )b dt |
Jt J t,

[ 4+ 4.

The sample data of q, 4, T used for the iden—
tification of the model parameters are shown in
Fig.3 - Fig.5, where @ , 1 =1,...,4 indicate

gl ti s
(3.14)

(24,+ G2)C2 —(24,+ 4,052 1| ta (3.15)

(4, 45+ 4,” )Cadt

’

(3.18Y



the ith joint. The true values of the
model parameters are assumed to be given as in
Table.2. The simulation results in Table.2 show
that both of the two estimation algorithms

proposed in Section 2 work well for this example.

4.Conclusion

We have proposed two identification models
for the model parameters and two alternative
estimation algorithms. Advantages and disadvan—
tages of these methods should be further inves-—
tigated. For an instance, the possible measure—
ment errors and computational errors should be
taken into account. It is an important problem
how to select the data points so that the rank
condition (2.30) is satisfied.

0.6
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om0 ( #4p )
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Fig.3 Position Trajectory
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Fig.5 Torque Trajectory

Table.2 Estimation Results

Integration interval : (t,, ti) sec

1.
2.
3.

Sampling time =

(0, 0.5), (0.5, 1.0), (1.0, 1.5)
(1.0, 1.5), (1.5, 2.0), (2.5, 3.0)
(2.5, 3.0), (3.0, 3.5), (3.5, 4.0)

2 (msec)

| Input | First Algorithm

= | data |

X {1 | 2 ] 3
£, 117.5500 |17.5500 | 17.5499 | 17.5492
%, | 7.5500 | 7.5500 | 7.5500 | 7.5497
R,, | 2.3430 | 2.3430 | 2.3430 | 2.3430
R,5 1 0.1760 | 0.1760 | 0.1760 | 0.1758
X5, | 3.1100 | 3.1100 | 3.1100 | 3.1100

| 0.3500 | 0.3500 | 0.3500 | 0.3500

| Input | Second Algorithm

" | data

X | 1 | 4 } 3
ﬁ,, | 17.5500 | 17.5500 | 17.5502 | 17.5501
ﬁz, | 7.5500 | 7.5500 | 7.5500 | 7.5498
ﬁjz | 2.3430 | 2.3430 | 2.3430 | 2.3429
ﬁzs | 0.1760 | 0.1760 | 0.1760 | 0.1783
ﬁ3| | 3.1100 | 3.1100 | 3.1100 | 3.1100
ﬁ+, | 0.3500 | 0.3500 | 0.3500 | 0.3500
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