• Title/Summary/Keyword: Euler polynomial

Search Result 31, Processing Time 0.019 seconds

SOME IDENTITIES ON THE BERNSTEIN AND q-GENOCCHI POLYNOMIALS

  • Kim, Hyun-Mee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1289-1296
    • /
    • 2013
  • Recently, T. Kim has introduced and analysed the $q$-Euler polynomials (see [3, 14, 35, 37]). By the same motivation, we will consider some interesting properties of the $q$-Genocchi polynomials. Further, we give some formulae on the Bernstein and $q$-Genocchi polynomials by using $p$-adic integral on $\mathbb{Z}_p$. From these relationships, we establish some interesting identities.

MIXED MULTIPLICITIES OF MAXIMAL DEGREES

  • Thanh, Truong Thi Hong;Viet, Duong Quoc
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.605-622
    • /
    • 2018
  • The original mixed multiplicity theory considered the class of mixed multiplicities concerning the terms of highest total degree in the Hilbert polynomial. This paper defines a broader class of mixed multiplicities that concern the maximal terms in this polynomial, and gives many results, which are not only general but also more natural than many results in the original mixed multiplicity theory.

SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

  • Seo, Seunghyun;Shin, Heesung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.467-481
    • /
    • 2015
  • Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs. We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the $Poincar\acute{e}$ polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold M(G). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold M(G) for complete multipartite graphs G.

MORE EXPANSION FORMULAS FOR q, 𝜔-APOSTOL BERNOULLI AND EULER POLYNOMIALS

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.417-445
    • /
    • 2020
  • The purpose of this article is to continue the study of q, 𝜔-special functions in the spirit of Wolfgang Hahn from the previous papers by Annaby et al. and Varma et al., with emphasis on q, 𝜔-Apostol Bernoulli and Euler polynomials, Ward-𝜔 numbers and multiple q, 𝜔power sums. Like before, the q, 𝜔-module for the alphabet of q, 𝜔-real numbers plays a crucial role, as well as the q, 𝜔-rational numbers and the Ward-𝜔 numbers. There are many more formulas of this type, and the deep symmetric structure of these formulas is described in detail.

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

Frequency analysis of beams with multiple dampers via exact generalized functions

  • Failla, Giuseppe
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-190
    • /
    • 2016
  • This paper deals with frequency analysis of Euler-Bernoulli beams carrying an arbitrary number of Kelvin-Voigt viscoelastic dampers, subjected to harmonic loads. Multiple external/internal dampers occurring at the same position along the beam axis, modeling external damping devices and internal damping due to damage or imperfect connections, are considered. The challenge is to handle simultaneous discontinuities of the response, in particular bending-moment/rotation discontinuities at the location of external/internal rotational dampers, shear-force/deflection discontinuities at the location of external/internal translational dampers. Following a generalized function approach, the paper will show that exact closed-form expressions of the frequency response under point/polynomial loads can readily be derived, for any number of dampers. Also, the exact dynamic stiffness matrix and load vector of the beam will be built in a closed analytical form, to be used in a standard assemblage procedure for exact frequency response analysis of frames.

IMPROVEMENT OF FLOW SIMULATIONS METHOD WITH MULTI-RESOLUTION ANALYSIS BY BOUNDARY TREATMENT (경계면 처리 개선을 통한 다중해상도 유동해석 기법 개선 연구)

  • Kang, H.M.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The computational efficiency of flow simulations with Multi-resolution analysis (MRA) was enhanced via the boundary treatment of the computational domain. In MRA, an adaptive dataset to a solution is constructed through data decomposition with interpolating polynomial and thresholding. During the decomposition process, the basis points of interpolation should exceed the boundary of the computational domain. In order to resolve this problem, the weight coefficients of interpolating polynomial were adjusted near the boundaries. By this boundary treatment, the computational efficiency of MRA was enhanced while the numerical accuracy of a solution was unchanged. This modified MRA was applied to two-dimensional steady Euler equations and the enhancement of computational efficiency and the maintenance of numerical accuracy were assessed.

A DISCONTINUOUS GALERKIN METHOD FOR A MODEL OF POPULATION DYNAMICS

  • Kim, Mi-Young;Yin, Y.X.
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.767-779
    • /
    • 2003
  • We consider a model of population dynamics whose mortality function is unbounded. We approximate the solution of the model using a discontinuous Galerkin finite element for the age variable and a backward Euler for the time variable. We present several numerical examples. It is experimentally shown that the scheme converges at the rate of $h^{3/2}$ in the case of piecewise linear polynomial space.

Effective Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation

  • Youn, Junhee;Hong, Changhee;Kim, TaeHoon;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.577-583
    • /
    • 2013
  • Recently, massive archives of ground information imagery from new sensors have become available. To establish a functional relationship between the image and the ground space, sensor models are required. The rational functional model (RFM), which is used as an alternative to the rigorous sensor model, is an attractive option owing to its generality and simplicity. To determine the rational polynomial coefficients (RPC) in RFM, however, we encounter the problem of obtaining a stable solution. The design matrix for solutions is usually ill-conditioned in the experiments. To solve this unstable solution problem, regularization techniques are generally used. In this paper, we describe the effective determination of the optimal regularization parameter in the regularization technique during RPC derivation. A brief mathematical background of RFM is presented, followed by numerical approaches for effective determination of the optimal regularization parameter using the Euler Method. Experiments are performed assuming that a tilted aerial image is taken with a known rigorous sensor. To show the effectiveness, calculation time and RMSE between L-curve method and proposed method is compared.