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MIXED MULTIPLICITIES OF MAXIMAL DEGREES

Truong Thi Hong Thanh and Duong Quoc Viet

Abstract. The original mixed multiplicity theory considered the class

of mixed multiplicities concerning the terms of highest total degree in

the Hilbert polynomial. This paper defines a broader class of mixed
multiplicities that concern the maximal terms in this polynomial, and

gives many results, which are not only general but also more natural
than many results in the original mixed multiplicity theory.

1. Introduction

Let (A,m) be an Artinian local ring with maximal ideal m and infinite residue
field A/m. Let S =

⊕
n∈Nd Sn be a finitely generated standard Nd-graded

algebra over A (i.e., S is generated over A by elements of total degree 1) and
let M =

⊕
n∈Nd Mn be a finitely generated Nd-graded S-module. Denote by

PM (n) the Hilbert polynomial of the Hilbert function `A[Mn] and by ProjS
the set of the homogeneous prime ideals of S which do not contain S++ =⊕

n>0 Sn. Put Supp++M = {P ∈ ProjS | MP 6= 0} and dim Supp++M =
s. Then by [5, Theorem 4.1], degPM (n) = s. Since PM (n) is a numerical

polynomial, one can write PM (n) =
∑

k∈Nd e(M ; k)
(
n+k
k

)
, e(M ; k) ∈ Z and(

n+k
k

)
=
(
n1+k1

k1

)
· · ·
(
nd+kd

kd

)
for all k = (k1, . . . , kd) and n = (n1, . . . , nd) ∈ Nd.

In past years, one studied the mixed multiplicities concerning the coefficients
of the terms of highest total degree in the Hilbert polynomial PM (n), i.e., the
mixed multiplicities e(M ; k) of M of the type k with |k| = k1 + · · ·+ kd = s.
These mixed multiplicities are briefly called the original mixed multiplicities (or
the mixed multiplicities of highest degree). And the original mixed multiplicity
theory has attracted much attention and has been continually developed (see
e.g. [2-12; 14-31]).

In this paper, we consider e(M ; k) such that e(M ; h) = 0 for all h > k
which concerns the coefficient of the maximal term of degree k in the Hilbert
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polynomial of M. Then e(M ; k) is called the mixed multiplicity (of maximal
degree) of M of the type k (Definition 2.2). Proposition 2.4 proves that e(M ; k)
are non-negative integers. Note that the presence of the mixed multiplicity
e(M ; k) with |k| < degPM (n) often arises from the process of transforming
the mixed multiplicities of highest degree (see [31]). Moreover, the natural
appearance of these mixed multiplicities is also expressed via the relationship
between their existence and the existence of other familiar objects. This fact
is shown by Proposition 2.9 which characterizes the existence of the mixed
multiplicity of the type k for a given k ∈ Nd. In addition, for the persuasiveness,
Example 2.12 showed the presence of all these mixed multiplicities.

The paper first answers to the question when mixed multiplicities of maximal
degrees are positive and characterizes these mixed multiplicities in terms of
the length of modules via filter-regular sequences. Recall that a homogeneous
element a ∈ S is called an S++-filter-regular element with respect to M if (0M :
a)n = 0 for all large n. And a sequence x1, . . . , xt in S is called an S++-filter-
regular sequence with respect to M if xi is an S++-filter-regular element with
respect to M/(x1, . . . , xi−1)M for all 1 ≤ i ≤ t. Set ei = (0, . . . , 1, . . . , 0) ∈ Nd

and Si = Sei
for 1 ≤ i ≤ d. A sequence of elements in

⋃d
j=1 Sj consisting

of k1 elements of S1, . . . , kd elements of Sd is called a sequence of the type
k = (k1, . . . , kd). Then we have the following result.

Theorem 1.1 (Theorem 2.7). Let e(M ; k) be the mixed multiplicity of maximal
degree of the type k of M. Assume that x is an S++-filter-regular sequence of
the type k of M. Then we have e(M ; k) = `A

[(
M/xM

)
n

]
for all large n. And

e(M ; k) 6= 0 if and only if dim Supp++

(
M
xM

)
= 0.

From this theorem we obtain Proposition 2.9; Remark 2.10; Corollary 2.11;
Example 2.12 on the existence of mixed multiplicities of maximal degrees.

To consider the relationship between mixed multiplicities of maximal de-
grees and other invariants, we turn now to the notion of mixed multiplicity
systems and related invariants. Recall that a sequence y of the type k ∈ Nd is
called a mixed multiplicity system of M of the type k if dim Supp++

(
M
yM

)
≤

0. Let x = x1, . . . , xn be a mixed multiplicity system of M of the type k.
Denote by Hi(x,M) the ith Koszul homology module of M with respect
to x. Then one can define that is called the Euler-Poincare characteristic
χ(x,M) =

∑n
i=0(−1)i`A[Hi(x,M)n] (a constant for all n � 0). And one

also define the mixed multiplicity symbol ẽ(x,M) as follows. If n = 0, then
`A[Mn] = c (const) for all n � 0 and set ẽ(x,M) = ẽ(∅,M) = c. If n > 0, set
ẽ(x,M) = ẽ(x′,M/x1M)− ẽ(x′, 0M : x1), here x′ = x2, . . . , xn (see [31]).

With the above notations, the main theorem of this paper is stated as follows.

Theorem 1.2 (Theorem 2.13). The mixed multiplicity of maximal degree of
M of the type k is defined if and only if there exists a mixed multiplicity system
x of M of the type k. In this case, we have

χ(x,M) = ẽ(x,M) = e(M ; k).
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As applications of this theorem, we obtain Corollary 2.16 which characterizes
the positivity of mixed multiplicities; Corollary 2.17 on the additivity of mixed
multiplicities of maximal degrees; and the following formula which transforms
mixed multiplicities of maximal degrees via mixed multiplicity systems.

Corollary 1.3 (Corollary 2.14). Let x = x1, . . . , xs be a mixed multiplicity sys-
tem of M of the type k. Denote by hi = (hi1, . . . , hid) the type of a subsequence
x1, . . . , xi of x for each 1 ≤ i ≤ s. Then for all large n, we have

e(M ; k) = `A
[(
M/xM

)
n

]
−

s∑
i=1

e

(
(x1, . . . , xi−1)M : xi

(x1, . . . , xi−1)M
; k− hi

)
.

And by Theorem 1.1 and Corollary 1.3, we immediately get the following
result.

Corollary 1.4 (Corollary 2.15). Let x be a mixed multiplicity system of M of
the type k. Then we have e(M ; k) ≤ `A

[(
M/xM

)
n

]
for all large n, and equality

holds if x is an S++-filter-regular sequence.

Moreover, applying Theorem 1.2 for mixed multiplicities of maximal degrees
of ideals, we get several corollaries (see Theorem 3.5, Corollary 3.8, Corollary
3.9, Corollary 3.10, Corollary 3.11, Corollary 3.12, Theorem 3.13) in Section 3.

The results of this paper show that many important properties of the mixed
multiplicities of highest degree not only are still true but also are more natural
in the broader class of the mixed multiplicities of maximal degrees. Further, we
see that because many constrained conditions in the original mixed multiplic-
ity theory can be eliminated, statements and proofs sometimes become more
convenient in the class of these new objects. Moreover, we hope that these
objects and results on them not only are a pure extension, but also will bring
a certain geometrical significance.

The paper is divided into three sections. Section 2 is devoted to the discus-
sion of mixed multiplicities of multi-graded modules. Section 3 gives applica-
tions of Section 2 to mixed multiplicities of ideals.

2. Mixed multiplicities of graded modules

This section studies a class of mixed multiplicities which concern the coeffi-
cients of the maximal terms in the Hilbert polynomial of multi-graded modules.

Let d be a positive integer. Put ei = (0, . . . , 1
(i)
, . . . , 0) ∈ Nd for each 1 ≤

i ≤ d and k! = k1! · · · kd!; | k |= k1 + · · · + kd for any k = (k1, . . . , kd) ∈ Nd.

Moreover, set 0 = (0, . . . , 0) ∈ Nd; 1 = (1, . . . , 1) ∈ Nd and nk = nk1
1 · · ·n

kd

d

for each n,k ∈ Nd and n ≥ 1. Let S =
⊕

n∈Nd Sn be a finitely generated

standard Nd-graded algebra over A (i.e., S is generated over A by elements
of total degree 1) and let M =

⊕
n≥0Mn be a finitely generated Nd-graded

S-module. Set S++ =
⊕

n≥1 Sn and Si = Sei
for any 1 ≤ i ≤ d. Denote by
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ProjS the set of the homogeneous prime ideals of S which do not contain S++.
Put

Supp++M = {P ∈ ProjS |MP 6= 0}.
By [5, Theorem 4.1], `A[Mn] is a polynomial for all large n. Denote by PM (n)
the Hilbert polynomial of the Hilbert function `A[Mn].

Remark 2.1. If we assign dim Supp++M = −∞ to the case that Supp++M = ∅
and the degree −∞ to the zero polynomial, then by [5, Theorem 4.1] and
[27, Proposition 2.7], we always have degPM (n) = dim Supp++M.

Recall that in particular, if dim Supp++M = s ≥ 0 and the terms of to-

tal degree s in the polynomial PM (n) have the form
∑
|k| = s e(M ; k)nk

k! , then

e(M ; k) are non-negative integers not all zero, called the mixed multiplicity
of M of the type k [5]. Obviously, these mixed multiplicities only concern
the coefficients of the terms of highest total degree in the Hilbert polynomial
degPM (n). And from now on, these mixed multiplicities are called the original
mixed multiplicities (or the mixed multiplicities of highest degree).

Now, we give a broader class than the class of the original mixed multiplic-
ities as in the above introduction.

Since PM (n) is a numerical polynomial, it is well known that we can write

PM (n) =
∑
k∈Nd

e(M ; k)

(
n + k

k

)
.

Then e(M ; k) ∈ Z for all k ∈ Nd. And we would like to select the following
objects.

Definition 2.2. We say that e(M ; k) is the mixed multiplicity of M of the type
k if e(M ; h) = 0 for all h > k. These mixed multiplicities are called the mixed
multiplicities of maximal degrees.

Remark 2.3. Note that in the above definition, the mixed multiplicity of M of
the type k does not depend on dim Supp++M. And if all the mixed multiplici-
ties of highest degree of M are positive, then the set of the mixed multiplicities
of maximal degrees of M and the set of the original mixed multiplicities of M
are the same.

Denote by 4kf(n) the k-difference of the function f(n) for each k ∈ Nd.
If e(M ; k) is the mixed multiplicity of M of the type k, then it can be verified

that 4k[e(M ; h)
(
n+h
h

)
] = 0 for all h 6= k. Hence

4kPM (n) = 4k
[
e(M ; k)

(
n + k

k

)]
= e(M ; k).

Moreover, in this case, since PM (n) takes positive values for all large n, it
follows that 4kPM (n) > 0, and so e(M ; k) > 0. Hence we obtain a result as
follows.
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Proposition 2.4. Let e(M ; k) be the mixed multiplicity of M of the type k.
Then

(i) e(M ; k) is a non-negative integer.
(ii) 4kPM (n) = e(M ; k).

Note that one can also get (i) as an immediate consequence of Theorem 2.7.
Next, we discuss filter-regular sequences as one of tools in the paper. The

notion of filter-regular sequences was introduced by Stuckrad and Vogel in
[13](see [1]). The theory of these sequences became an important tool to study
some classes of singular rings and has been continually developed (see e.g.
[1, 17,27,29,32]).

Definition 2.5. Let a ∈ S be a homogeneous element. Then a is called an
S++-filter-regular element with respect to M if (0M : a)n = 0 for all large n. Let
x1, . . . , xt be homogeneous elements in S. We call that x1, . . . , xt is an S++-
filter-regular sequence with respect to M if xi is an S++-filter-regular element
with respect to M/(x1, . . . , xi−1)M for all 1 ≤ i ≤ t.

Remark 2.6. We need to emphasize the following notes for filter-regular se-
quences:

(i) By [27, Proposition 2.2 and Note (ii)], for each k = (k1, . . . , kd) ∈ Nd

there exists an S++-filter-regular sequence x in
⋃d

i=1 Si with respect to
M consisting of k1 elements of S1, . . . , kd elements of Sd. In this case,
x is called an S++-filter-regular sequence of the type k.

(ii) If a ∈ Si is an S++-filter-regular element, then by [27, Remark 2.6]
we obtain `A[(M/aM)n] = `A[Mn] − `A[Mn−ei ] for large n. Hence
4eiPM (n) = PM/aM (n). From this it follows that for any S++-filter-

regular sequence x of the type k, we get 4kPM (n) = PM/xM (n).

In a recently appeared paper [27], by using S++-filter-regular sequences,
Manh and Viet answered to the question when original mixed multiplicities
are positive and characterized these mixed multiplicities in terms of lengths of
modules (see [27, Theorem 3.4]). This theorem is developed to a broader class
as the following.

Theorem 2.7. Let S be a finitely generated standard Nd-graded algebra over
an Artinian local ring A and let M be a finitely generated standard Nd-graded
S-module. Let e(M ; k) be the mixed multiplicity of maximal degree of the type
k of M. Assume that x is an S++-filter-regular sequence of the type k of M.
Then we have

e(M ; k) = `A
[(
M/xM

)
n

]
for all large n. And e(M ; k) 6= 0 if and only if dim Supp++

(
M
xM

)
= 0.

Proof. First, we have 4kPM (n) = PM/xM (n) by Remark 2.6(ii). Note that

PM/xM (n) = `A
[(
M/xM

)
n

]
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for all n � 0 and 4kPM (n) = e(M ; k) by Proposition 2.4(ii). So for all
n� 0, we get e(M ; k) = `A

[(
M/xM

)
n

]
. From this it follows that e(M,k) 6= 0

if and only if degPM/xM (n) = 0. Remember that dim Supp++

(
M/xM

)
=

degPM/xM (n) by Remark 2.1. Thus,

e(M,k) 6= 0 if and only if dim Supp++

(
M/xM

)
= 0. �

The following important notions will be used in the next parts of the paper.

Definition 2.8 ([31]). Let y = y1, . . . , yn be a sequence of elements in
⋃d

j=1 Sj

consisting of m1 elements of S1, . . . ,md elements of Sd. Then y is called a mixed
multiplicity system of M of the type m = (m1, . . . ,md) if

dim Supp++

(
M/yM

)
≤ 0.

Let x = x1, . . . , xn be a mixed multiplicity system of M of the type k. Then

(i) If n = 0, then `A[Mn] = c (const) for all n � 0 and set ẽ(x,M) =
ẽ(∅,M) = c. If n > 0, set ẽ(x,M) = ẽ(x′,M/x1M) − ẽ(x′, 0M : x1),
here x′ = x2, . . . , xn. Then ẽ(x,M) is called the mixed multiplicity
symbol of M with respect to x of the type k.

(ii) From the Koszul complex of M with respect to x

0 −→ Kn(x,M) −→ Kn−1(x,M) −→ · · · −→ K1(x,M) −→ K0(x,M) −→ 0,

one obtain the sequence of the homology modules

. . . , H0(x,M), H1(x,M), . . . ,Hn(x,M), . . . .

Then χ(x,M) =
∑n

i=0(−1)i`A[Hi(x,M)n](const) for all n � 0 is
called the Euler-Poincare characteristic of M with respect to x of the
type k.

The compatibility of mixed multiplicities with other familiar objects is shown
by the following proposition which characterizes the existence of mixed multi-
plicities of maximal degrees in different terms.

Proposition 2.9. Let S be a finitely generated standard Nd-graded algebra over
an Artinian local ring A and let M be a finitely generated standard Nd-graded
S-module. Then the following are equivalent:

(i) There exists an S++-filter-regular sequence x of the type k such that x
is a mixed multiplicity system of M.

(ii) There exists a mixed multiplicity system of M of the type k.
(iii) 4kPM (n) is a constant.
(iv) The mixed multiplicity of M of the type k is defined.

Proof. (i)⇒ (ii) is clear. (ii)⇒ (iii): Let x be a mixed multiplicity system of
M of the type k. By [31, Theorem 3.7], we obtain

χ(x,M) = ẽ(x,M) = 4kPM (n).
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Hence 4kPM (n) is a constant. (iii)⇒ (iv): Since 4kPM (n) is a constant, it
follows that 4hPM (n) = 0 for all h > k. Therefore, e(M ; h) = 0 for all h > k.
So the mixed multiplicity of M of the type k is defined. (iv)⇒ (i): By Remark
2.6(i), there exists an S++-filter-regular sequence x of the type k. By Theorem
2.7, we get

e(M ; k) = `A
[(
M/xM

)
n

]
for all large n. Hence PM/xM (n) is a constant. So dim Supp++

(
M/xM

)
≤ 0

by Remark 2.1. Therefore, x is a mixed multiplicity system of M. �

From Proposition 2.9 and the proof of Proposition 2.9, we obtain some
following effective comments for the existence of mixed multiplicities.

Remark 2.10. Assume that the mixed multiplicity of M of the type k is defined.
Then there exists a mixed multiplicity system x = x1, . . . , xs of M of the type
k by Proposition 2.9. Now let x1, . . . , xi be a subsequence of x of the type
h = (h1, . . . , hd) for each 1 ≤ i ≤ s. It is easily seen that xi+1, . . . , xs is a
mixed multiplicity system of M/(x1, . . . , xi)M of the type k − h. Hence the
mixed multiplicity of M/(x1, . . . , xi)M of the type k − h is also defined by
Proposition 2.9. Moreover, from the proof of Proposition 2.9, it follows that
any S++-filter-regular sequence x of the type k of M is a mixed multiplicity
system of the type k of M. Hence if a ∈ Si is an S++-filter-regular element and
ki > 0, then e(M/aM ; k− ei) is defined.

Let a ∈ Si be an S++-filter-regular element. Now if e(M ; k) is defined and
ki > 0, then e(M/aM ; k − ei) is defined by Remark 2.10. Since 4eiPM (n) =
PM/aM (n) by Remark 2.6(ii), it implies that

4k−eiPM/aM (n) = 4k−ei [4eiPM (n)] = 4kPM (n).

So e(M ; k) = e(M/aM ; k−ei) by Proposition 2.4. From this it follows that for
any S++-filter-regular sequence y of the type h with h ≤ k, e(M/yM ; k− h)
is defined and e(M ; k) = e(M/yM ; k− h). In particular, if x is an S++-filter-
regular sequence of the type k, then e(M/xM ; 0) is defined and e(M ; k) =
e(M/xM ; 0).

The above facts yield:

Corollary 2.11. Let e(M ; k) be the mixed multiplicity of the type k of M.
Assume that y is an S++-filter-regular sequence of the type h of M with h ≤ k,
and x is an S++-filter-regular sequence of the type k of M. Then e(M/yM ; k−
h) and e(M/xM ; 0) are defined. Moreover, we have

e(M ; k) = e(M/yM ; k− h) = e(M/xM ; 0).

The following example will build a finitely generated standard N3-graded
algebra containing full mixed multiplicity kinds.
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Example 2.12. Let k be an infinite field and let x1, x2, x3, y1, y2, y3, z1, z2, z3

be indeterminates. Let

B = k[x1, x2, x3, y1, y2, y3, z1, z2, z3]

be a finitely generated standard N3-graded algebra over k with

deg xi = (1, 0, 0), deg yi = (0, 1, 0), deg zi = (0, 0, 1), i = 1, 2, 3.

Set

I = (x1, y1, z1) ∩ (x1, x2) ∩ (y1, y2) ∩ (z1, z2)

and S = B/I. Then S is a finitely generated standard N3-graded algebra over
k and dimS = 7. Denote by PS(n1, n2, n3) the Hilbert polynomial of S. For
x ∈ B, denote by x̄ the image of x in S. Then [27, Example 3.7] showed that
degPS(n1, n2, n3) = 4 and

e(S; 2, 2, 0) = e(S; 2, 0, 2) = e(S; 0, 2, 2) = 1;

e(S; 3, 1, 0) = e(S; 1, 3, 0) = e(S; 3, 0, 1) = e(S; 1, 0, 3)

= e(S; 0, 3, 1) = e(S; 0, 1, 3) = e(S; 4, 0, 0)

= e(S; 0, 4, 0) = e(S; 0, 0, 4) = e(S; 2, 1, 1)

= e(S; 1, 2, 1) = e(S; 1, 1, 2) = 0.

Hence the mixed multiplicities e(S; 3, 0, 0); e(S; 0, 3, 0); e(S; 0, 0, 3); e(S; 1, 1, 1)
are defined. By the symmetry, we get

e(S; 3, 0, 0) = e(S; 0, 3, 0) = e(S; 0, 0, 3).

By [27, Example 3.7], x̄3, x̄2, x̄1 is an S++-filter-regular sequence consisting of
3 elements in S1 and S

(x̄3,x̄2,x̄1):S∞++
= 0. So dim Supp++

S
(x̄3,x̄2,x̄1) < 0. From

this it follows that

`k

[( S

(x̄3, x̄2, x̄1)

)
(n1,n2,n3)

]
= 0

for all n1, n2, n3 � 0. Hence by Theorem 2.7, we obtain e(S; 3, 0, 0) = 0. Thus
e(S; 3, 0, 0) = e(S; 0, 3, 0) = e(S; 0, 0, 3) = 0.

Upon simple computation, we show that x̄3, ȳ3, z̄3 is an S++-filter-regular
sequence of S consisting of 1 element of S1, 1 element of S2 and 1 element of
S3, and

S/(x̄3, ȳ3, z̄3) : S∞++
∼= B/(I, x3, y3, z3) : B∞++ = B/(x1, y1, z1, x3, y3, z3)

∼= k[x2, y2, z2].

By [27, Remark 2.4], we have[
(x̄3, ȳ3, z̄3) : S∞++

(x̄3, ȳ3, z̄3)

]
(n1,n2,n3)

= 0

for all n1, n2, n3 � 0. Therefore, the mixed multiplicities of S/[(x̄3, ȳ3, z̄3) :
S∞++] and the mixed multiplicities of S/(x̄3, ȳ3, z̄3) are the same. Moreover,
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note that by Corollary 2.11, we get e(S; 1, 1, 1) = e(S/(x̄3, ȳ3, z̄3); 0, 0, 0). So
we obtain

e(S; 1, 1, 1) = e(S/[(x̄3, ȳ3, z̄3) : S∞++]; 0, 0, 0) = e(k[x2, y2, z2]; 0, 0, 0).

Now, since deg x2 = (1, 0, 0),deg y2 = (0, 1, 0),deg z2 = (0, 0, 1) in the standard
N3-graded algebra k[x2, y2, z2] over k, it follows that e(k[x2, y2, z2]; 0, 0, 0) = 1.
Thus, e(S; 1, 1, 1) = 1. Consequently, it can be verified that all mixed multiplic-
ities of maximal degrees of this finitely generated standard N3-graded algebra
S are indicated.

The following useful result proves that mixed multiplicity of the type k; the
Euler-Poincare characteristic and the mixed multiplicity symbol of any mixed
multiplicity system of the type k are the same.

Theorem 2.13. The mixed multiplicity of maximal degree of M of the type k
is defined if and only if there exists a mixed multiplicity system x of M of the
type k. In this case, we have

χ(x,M) = ẽ(x,M) = e(M ; k).

Proof. The mixed multiplicity of maximal degree of M of the type k is defined
if and only if there exists a mixed multiplicity system x of M of the type
k by Proposition 2.9. In this case, 4kPM (n) = e(M ; k) by Proposition 2.4.
Moreover,

χ(x,M) = ẽ(x,M) = 4kPM (n)

by [31, Theorem 3.7]. Hence we obtain χ(x,M) = ẽ(x,M) = e(M ; k). �

We would like to comment here that Theorem 2.13 not only covers, but also
is more natural than [31, Theorem 3.9 and Theorem 3.10].

As an immediate consequence of Theorem 2.13, we also obtain a more natural
result than [31, Corollary 3.11(ii)] in the original mixed multiplicity theory.

Corollary 2.14. Let x = x1, . . . , xs be a mixed multiplicity system of M of
the type k. Denote by hi = (hi1, . . . , hid) the type of a subsequence x1, . . . , xi
of x for each 1 ≤ i ≤ s. Then for all large n, we have

e(M ; k) = `A
[(
M/xM

)
n

]
−

s∑
i=1

e

(
(x1, . . . , xi−1)M : xi

(x1, . . . , xi−1)M
; k− hi

)
.

Proof. By Definition 2.8(i), it follows that

ẽ(x,M) = ẽ

(
∅, M

xM

)
−

s∑
i=1

ẽ

(
xi+1, . . . , xs,

(x1, . . . , xi−1)M : xi
(x1, . . . , xi−1)M

)
and ẽ

(
∅, M

xM

)
= `A

[(
M
xM

)
n

]
for all large n. Note that xi+1, . . . , xs is a mixed

multiplicity system of (x1,...,xi−1)M :xi

(x1,...,xi−1)M of the type k − hi. Hence by Theorem

2.13, we get e(M ; k) = `A
[(
M/xM

)
n

]
−
∑s

i=1 e

(
(x1,...,xi−1)M :xi

(x1,...,xi−1)M ; k − hi

)
for

all large n. �
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By Theorem 2.7 and Corollary 2.14, we immediately obtain the following.

Corollary 2.15. Let x be a mixed multiplicity system of M of the type k. Then
we have e(M ; k) ≤ `A

[(
M/xM

)
n

]
for all large n, and equality holds if x is an

S++-filter-regular sequence.

Combining Remark 2.6 and Theorem 2.7 with Corollary 2.14, we get:

Corollary 2.16. Let e(M ; k) be the mixed multiplicity of M of the type k.
Then the following are equivalent:

(i) e(M ; k) > 0.
(ii) dim Supp++

(
M/xM

)
= 0 for any mixed multiplicity system x of the

type k.
(iii) dim Supp++

(
M/xM

)
= 0 for any S++-filter-regular sequence x of the

type k.
(iv) There exists an S++-filter-regular sequence x of M of the type k such

that

dim Supp++

(
M/xM

)
= 0.

Proof. (i)⇒ (ii): Let x be a mixed multiplicity system of M of the type k. Then
by Corollary 2.15, we have `A

[(
M/xM

)
n

]
> 0 for all large n since e(M ; k) > 0.

So degPM/xM (n) = 0. By Remark 2.1, we get

dim Supp++

(
M/xM

)
= degPM/xM (n).

Hence dim Supp++

(
M/xM

)
= 0.

(ii)⇒ (iii): By Remark 2.10, any S++-filter-regular sequence x of the type
k of M is a mixed multiplicity system of the type k of M. Hence by (ii), we
obtain dim Supp++

(
M/xM

)
= 0 for any S++-filter-regular sequence x of the

type k.
(iii)⇒ (iv): By Remark 2.6(i), there exists an S++-filter-regular sequence x

of the type k of M. And by (iii), dim Supp++

(
M/xM

)
= 0. Hence there exists

an S++-filter-regular sequence x of the type k of M such that

dim Supp++

(
M/xM

)
= 0.

(iv)⇒ (i): Assume that there exists an S++-filter-regular sequence x of M
of the type k such that

dim Supp++

(
M/xM

)
= 0.

Then by Theorem 2.7, we get e(M ; k) > 0. �

We obtain the following result which shows that mixed multiplicities of max-
imal degrees are additive on short exact sequences.

Corollary 2.17. Let 0 −→M ′ −→M −→M” −→ 0 be a short exact sequence
of Nd-graded S-modules. Then the following statements hold.

(i) e(M ; k) is defined if and only if both e(M ′; k) and e(M”; k) are defined.
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(ii) Assume that e(M ; k) is defined. Then e(M ; k) = e(M ′; k) + e(M”; k),
i.e., the mixed multiplicities are additive on short exact sequences.

Proof. Let x be a sequence of elements in
⋃d

j=1 Sj of the type k. Then x is a
mixed multiplicity system of M if and only if x is a mixed multiplicity system
of both M ′ and M” by [31, Lemma 2.7]. Hence e(M ; k) is defined if and
only if both e(M ′; k) and e(M”; k) are defined by Proposition 2.9. We get
(i). The proof of (ii): Since e(M ; k) is defined, it follows that there exists a
mixed multiplicity system y of M of the type k by Proposition 2.9. Then we
have χ(y,M) = χ(y,M ′) + χ(y,M”) by [31, Lemma 3.2(i)]. So e(M ; k) =
e(M ′; k) + e(M”; k) by Theorem 2.13. �

3. Mixed multiplicities of ideals

In this section, we will give some applications of Section 2 to mixed multi-
plicities of modules over local rings with respect to ideals.

Let (R, n) be a Noetherian local ring with maximal ideal n and infinite
residue field R/n. Let N be a finitely generated R-module. Let J, I1, . . . , Id be
ideals of R with J being n-primary. For any k = (k1, . . . , kd); n = (n1, . . . , nd) ∈
Nd and I = I1, . . . , Id, set I[k] = I

[k1]
1 , . . . , I

[kd]
d and In = In1

1 · · · I
nd

d . We get an

N(d+1)-graded algebra and an N(d+1)-graded module:

T =
⊕

n≥0, n≥0

JnIn

Jn+1In
and N =

⊕
n≥0, n≥0

JnInN
Jn+1InN

.

Then T is a finitely generated standard N(d+1)-graded algebra over an Artinian
local ring R/J and N is a finitely generated standard N(d+1)-graded T -module.
The mixed multiplicity of N of the type (k0,k) is denoted by e

(
J [k0+1], I[k];N

)
,

i.e., e
(
J [k0+1], I[k];N

)
:= e(N ; k0,k) and which is called the mixed multiplicity

of N with respect to ideals J, I of the type (k0 +1,k). The mixed multiplicity of
N with respect to ideals J, I of the type (k0+1,k) with k0+ | k |= dim N

0N :I∞−1

(see e.g. [5,10,19]) is called the original mixed multiplicity of N with respect to
ideals J, I of the type (k0 + 1,k). Set I = JI1 · · · Id; I0 = J and Ti = Ii/JIi
for all 0 ≤ i ≤ d.

Remark 3.1. Assign dim N
0N :I∞ = −∞ to the case that N

0N :I∞ = 0. Then we

always have dim Supp++N = dim N
0N :I∞ − 1 by [31, Remark 4.1].

Definition 3.2 ([31, Definition 4.2]). An element a ∈ R is called a Rees su-
perficial element of N with respect to I if there exists i ∈ {1, . . . , d} such that
a ∈ Ii and

aN
⋂

InIiN = aInN

for all n � 0. A sequence x1, . . . , xt in R is called a Rees superficial sequence
of N with respect to I if xj+1 is a Rees superficial element of N/(x1, . . . , xj)N
with respect to I for all j = 0, 1, . . . , t − 1. A Rees superficial sequence of N



616 T. T. H. THANH AND D. Q. VIET

consisting of k1 elements of I1, . . . , kd elements of Id is called a Rees superficial
sequence of N of the type k = (k1, . . . , kd).

Definition 3.3 ([31, Definition 4.4]). Let x be a Rees superficial sequence of
N with respect to ideals J, I of the type (k0,k) ∈ Nd+1. Then x is called a
mixed multiplicity system of N with respect to ideals J, I of the type (k0,k) if
dim N

xN :I∞ ≤ 1.

Remark 3.4. Recall that e(N ; k0,k) = e(J [k0+1], I[k];N). Then we have:

(i) Let a ∈ Ii be a Rees superficial element of N with respect to J, I, a∗

the image of a in Ti, e(0N : a∗;h0,h); e(N/a∗N ;h0,h) be defined.

By [31, (4.1)],
(
N/a∗N

)
(m, m)

∼=
[⊕

n≥0, n≥0
JnIn(N/aN)

Jn+1In(N/aN)

]
(m, m)

for

m� 0; m� 0. Hence e(N/a∗N ;h0,h) = e(J [h0+1], I[h];N/aN).
Recall that there exists u � 0 such that (0N : a∗)(n+u, n+u1) =

WJnIn
WJn+1In for all n ≥ 0; n ≥ 0 by [31, (4.3)], here W = (0N : a)

⋂
IuN.

Therefore, we get e(0N : a∗;h0,h) = e(J [h0+1], I[h];W ). Let Y be a
submodule of N. We put R =

⊕
n≥0, n≥0 J

nIn; Y =
⊕

n≥0, n≥0 J
nInY

and X = Y : R∞++. Then by [27, Lemma 2.3], there exists v � 0 such
that X(n+v,n+v1) = R(n, n)X(v, v1) for all n ≥ 0; n ≥ 0. Note that
for all n � 0; n � 0, R(n, n)X(v, v1) ⊂ Y(n+v,n+v1). Consequently
X(n+v,n+v1) = Y(n+v,n+v1) for all n � 0; n � 0. From this it fol-
lows that (Y : I∞)JnIn = Y JnIn for all n � 0; n � 0. Therefore,
we have e(J [h0+1], I[h];Y ) = e(J [h0+1], I[h];Y : I∞). Next set U =
0N : a. Then since U : I∞ = W : I∞, we obtain e(J [h0+1], I[h];U) =
e(J [h0+1], I[h];W ). Thus e(0N : a∗;h0,h) = e(J [h0+1], I[h]; 0N : a).

(ii) We always have dim N
0N :I∞ 6= 0 since (0N : I∞) : I = 0N : I∞.

(iii) If dim N
0N :I∞ = 1, then e(J [1], I[0];N) = e(J ; N

0N :I∞ ) by [20, Proposi-

tion 3.2]. Moreover, if dim N
0N :I∞ < 0, then N

0N :I∞ = 0. In this case,

e(J ; N
0N :I∞ ) = 0, and e(J [1], I[0];N) = 0 since dim Supp++N < 0 by

Remark 3.1. Thus, if dim N
0N :I∞ ≤ 1, then e(J [1], I[0];N) = e(J ; N

0N :I∞ )

by (ii).
(iv) Let x be a Rees superficial sequence of N with respect to J, I of the

type (k0,k) and let x∗ be the image of x in
⋃d

i=0 Ti. Then x is a mixed
multiplicity system of N with respect to J, I of the type (k0,k) if and
only if x∗ is a mixed multiplicity system of N of the type (k0,k) by
[31, Remark 4.5].

By Corollary 2.14 and Remark 3.4, we obtain the following result.

Theorem 3.5. Let x = x1, . . . , xs be a mixed multiplicity system of N with
respect to ideals J, I of the type (k0,k). Denote by (mi,hi) = (mi, hi1, . . . , hid)
the type of a subsequence x1, . . . , xi of x for each 1 ≤ i ≤ s. For 1 ≤ i ≤ s, set
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Ni = (x1,...,xi−1)N :xi

(x1,...,xi−1)N . Then we have

e(J [k0+1], I[k];N) = e
(
J ;

N

xN : I∞
)
−

s∑
i=1

e
(
J [k0−mi+1], I[k−hi];Ni

)
.

Proof. Since x is a mixed multiplicity system of N with respect to ideals J, I of
the type (k0,k), it follows that dim N

xN :I∞ ≤ 1, and x∗ is a mixed multiplicity
system of the type (k0,k) of N by Remark 3.4(iv). Recall that e(N ; k0,k) =
e(J [k0+1], I[k];N). It can be verified (see [31, (4.1)]) that

(1)
[
N/(x∗1, . . . , x∗i )N

]
(m, m)

∼=
[ ⊕
n≥0, n≥0

JnIn(N/(x1, . . . , xi)N)

Jn+1In(N/(x1, . . . , xi)N)

]
(m, m)

for all m� 0; m� 0 and 1 ≤ i ≤ s. Hence it is easily seen by Remark 3.4(i)
that

e(N/x∗N ; 0,0) = e(J [1], I[0];N/xN)

and

e

(
(x∗1, . . . , x

∗
i−1)N : x∗i

(x∗1, . . . , x
∗
i−1)N

; k0 −mi,k− hi

)
= e

(
J [k0−mi+1], I[k−hi];

(x1, . . . , xi−1)N : xi
(x1, . . . , xi−1)N

)
for each 1 ≤ i ≤ s. Moreover, e(J [1], I[0];N/xN) = e(J ; N

xN :I∞ ) by Remark
3.4(iii). Consequently, by Corollary 2.14 we get

e(J [k0+1], I[k];N) = e
(
J ;

N

xN : I∞
)
−

s∑
i=1

e
(
J [k0−mi+1], I[k−hi];Ni

)
,

which finishes the proof. �

One expressed original mixed multiplicities of ideals in terms of the Hilbert-
Samuel multiplicity by using different sequences. First, in the case of n-primary
ideals, Risler-Teissier [15] in 1973 showed that each original mixed multiplicity
is the multiplicity of an ideal generated by a superficial sequence and Rees
[11] in 1984 proved that original mixed multiplicities are multiplicities of ideals
generated by joint reductions. For the case of arbitrary ideals, Viet [20] in 2000
characterized original mixed multiplicities as the Hilbert-Samuel multiplicity
via (FC)-sequences.

Definition 3.6 ([20]). Let I = I1, . . . , Id be ideals of R. Set I = I1 · · · Id. An
element a ∈ R is called a weak-(FC)-element of N with respect to I if there
exists i ∈ {1, . . . , d} such that a ∈ Ii and the following conditions are satisfied:

(i) a is an I-filter-regular element with respect to N, i.e., 0N : a ⊆ 0N : I∞.
(ii) a is a Rees superficial element of N with respect to I.
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A sequence x1, . . . , xt in R is called a weak-(FC)-sequence of N with respect to
I if xi+1 is a weak-(FC)-element of N/(x1, . . . , xi)N with respect to I for all
0 ≤ i ≤ t−1. A weak-(FC)-sequence of N consisting of k1 elements of I1, . . . , kd
elements of Id is called a weak-(FC)-sequence of N of the type k = (k1, . . . , kd).

Remember that [20] defined weak-(FC)-sequences in the condition

I *
√

AnnRN

(see e.g. [3,10,21–23,25,26,28,29]). In Definition 3.6, we omitted this condition.
Moreover, the authors of [4] proved that the superficial sequences in [15,17,18,
27] are weak-(FC)-sequences (see [4, Remark 3.8]).

Remark 3.7. Note that for any k ∈ Nd, there exists a weak-(FC)-sequence
of N with respect to I of the type k by [10, Proposition 2.3]. And if x is a
weak-(FC)-sequence of N with respect to J, I, then x∗ is a T++-filter-regular
sequence with respect to N by [29, Proposition 4.5]. Hence by Remark 2.10, it
follows that if e(J [k0+1], I[k];N) is defined, then any weak-(FC)-sequence x of
N with respect to J, I of the type (k0,k) is a mixed multiplicity system of N,
i.e., dim N

xN :I∞ ≤ 1.

From Proposition 2.9 and Remark 3.4, and Remark 3.7, we have the follow-
ing.

Corollary 3.8. The following are equivalent:

(i) There exists a weak-(FC)-sequence x of N with respect to J, I of the
type (k0,k) such that x is a mixed multiplicity system of N.

(ii) There exists a mixed multiplicity system of N of the type (k0,k).
(iii) The mixed multiplicity of N of the type (k0,k) is defined.

Proof. (i)⇒(ii) is clear. (ii)⇒(iii): Since x is a mixed multiplicity system of
N of the type (k0,k), x∗ is a mixed multiplicity system of N of the type
(k0,k) by Remark 3.4(iv). Hence e(N ; k0,k) is defined by Proposition 2.9. So
e(J [k0+1], I[k];N) is defined since e(N ; k0,k) = e(J [k0+1], I[k];N). (iii)⇒(i) is
evident by Remark 3.7. �

Next, as an immediate application of Corollary 2.11 and Remark 3.4, and
Remark 3.7, we obtain:

Corollary 3.9. Let e(J [k0+1], I[k];N) be the mixed multiplicity of the type
(k0,k). Let x be a weak-(FC)-sequence of N with respect to J, I of the type
(h0,h) with (h0,h) ≤ (k0,k). Then e(J [k0−h0+1], I[k−h];N/xN) is defined and

e(J [k0+1], I[k];N) = e(J [k0−h0+1], I[k−h];N/xN).

Proof. Since x is a weak-(FC)-sequence of N with respect to J , I of the type
(h0,h), it follows that x∗ is a T++-filter-regular sequence with respect to N of
the type (h0,h) by Remark 3.7. Hence e(N/x∗N ; k0−h0,k−h) is defined and

e(N ; k0,k) = e(N/x∗N ; k0 − h0,k− h)
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by Corollary 2.11. So e(J [k0−h0+1], I[k−h];N/xN) is defined. Moreover,

e(N/x∗N ; k0 − h0,k− h) = e(J [k0−h0+1], I[k−h];N/xN)

by Remark 3.4(i) and (1). Thus,

e(J [k0+1], I[k];N) = e(J [k0−h0+1], I[k−h];N/xN). �

By Remark 3.4, Remark 3.7 and Corollary 3.9, we get the following result
which can be considered as a corollary of Theorem 3.5.

Corollary 3.10. Let e(J [k0+1], I[k];N) be the mixed multiplicity of the type
(k0,k). Let x be a weak-(FC)-sequence of N with respect to J , I of the type
(k0,k). Then

e(J [k0+1], I[k];N) = e(J ;
N

xN : I∞
).

And e(J [k0+1], I[k];N) 6= 0 if and only if dim N
xN :I∞ = 1.

Proof. Since x is a weak-(FC)-sequence of N with respect to J , I of the type
(k0,k), it follows that e(J [k0+1], I[k];N) = e(J [1], I[0];N/xN) by Corollary 3.9.
Note that dim N

xN :I∞ ≤ 1 by Remark 3.7. Therefore, e(J [1], I[0];N/xN) =

e(J ; N
xN :I∞ ) by Remark 3.4(iii). So e(J [k0+1], I[k];N) = e(J ; N

xN :I∞ ). Hence

e(J [k0+1], I[k];N) 6= 0 if and only if e(J ; N
xN :I∞ ) 6= 0. This is equivalent to

dim N
xN :I∞ = 1 by Remark 3.4(ii) and Remark 3.4(iii). �

Note that one can prove Corollary 3.10 by using Theorem 3.5 as follows:

Set Ni = (x1,...,xi−1)N :xi

(x1,...,xi−1)N for each 1 ≤ i ≤ s. Since x is a weak-(FC)-

sequence of N with respect to J , I, x is an I-filter-regular sequence with re-
spect to N. Consequently, Ni/(0Ni

: I∞) = 0 since (x1, . . . , xi−1)N : xi ⊆
(x1, . . . , xi−1)N : I∞. So dimNi/(0Ni : I∞) < 0. Hence

s∑
i=1

e
(
J [k0−mi+1], I[k−hi];Ni

)
= 0.

Then we obtain e(J [k0+1], I[k];N) = e(J ; N
xN :I∞ ) by Theorem 3.5. We get the

proof of Corollary 3.10.
Recall that in the case that k0+ | k |= dim N

0N :I∞ − 1, [20, Theorem 3.4] in

2000 showed (see e.g. [4,10,21,22,25,26,28]) that e(J [k0+1], I[k];N) 6= 0 if and
only if there exists a weak-(FC)-sequence of N of the type (0,k) with respect to
J, I such that dimN/xN : I∞ = dimN/0N : I∞− | k | . In this case, we obtain
e(J [k0+1], I[k];N) = e

(
J ; N

xN :I∞

)
. Hence Corollary 3.10 is a more natural result

than [20, Theorem 3.4] in the original mixed multiplicity theory. Note that [4]
proved that [20, Theorem 3.4] covers the results of Risler and Teissier [15] in
1973; Trung [17, Theorem 3.4] in 2001; Trung and Verma [18, Theorem 1.4] in
2007 (see [4, Remark 3.8]).

As an immediate consequence of Theorem 3.5 and Corollary 3.10, we get
the following interesting corollary.
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Corollary 3.11. Let x be a mixed multiplicity system of N with respect to
ideals J, I of the type (k0,k). Then we have

e(J [k0+1], I[k];N) ≤ e
(
J ;

N

xN : I∞
)
,

and equality holds if x is a weak-(FC)-sequence of N with respect to J , I.

By combining Corollary 3.10 and Corollary 3.11 with Remark 3.4 and Re-
mark 3.7, we have the following.

Corollary 3.12. Let e(J [k0+1], I[k];N) be the mixed multiplicity of the type
(k0,k). Then the following are equivalent:

(i) e(J [k0+1], I[k];N) > 0.
(ii) dim N

xN :I∞ = 1 for any mixed multiplicity system x of N of the type
(k0,k).

(iii) dim N
xN :I∞ = 1 for any weak-(FC)-sequence x of N of the type (k0,k).

(iv) There exists a weak-(FC)-sequence x of N of the type (k0,k) such that

dim
N

xN : I∞
= 1.

Proof. (i) ⇒(ii): By Corollary 3.11, we have e
(
J ; N

xN :I∞

)
> 0. Hence since

dim N
xN :I∞ ≤ 1, it follows that dim N

xN :I∞ = 1 by Remark 3.4(ii). (ii)⇒ (iii)
is clear by Remark 3.7. (iii)⇒ (iv) is evident by Remark 3.7. (iv)⇒(i) is
immediate by Corollary 3.10. The corollary is proved. Note that the proof of
this corollary can be based on Corollary 2.16, Remark 3.4 and Remark 3.7. �

Suppose that x is a mixed multiplicity system of N with respect to J , I
of the type (k0,k). Then x∗ is a mixed multiplicity system of N of the type
(k0,k) by Remark 3.4(iv). Hence we obtain ẽ(x∗,N ) = χ(x∗,N ) = e(N ; k0,k)
by Theorem 2.13. Moreover, we have e(N ; k0,k) = e(J [k0+1], I[k];N). So we
get a version of [31, Theorem 4.9] for these mixed multiplicities.

Theorem 3.13. Let x be a mixed multiplicity system of N with respect to

ideals J, I of the type (k0,k) and let x∗ be the image of x in
⋃d

i=0 Ti. Then

e(J [k0+1], I[k];N) = χ(x∗,N ) = ẽ(x∗,N ).

Finally, we would like to give some following comments.

Remark 3.14. From the results of [31] and this paper, we find that the pres-
ence of the mixed multiplicity of M of the type k with |k| < Supp++M also
arises from the process of transforming original mixed multiplicities (see e.g.
[31, Corollary 3.11, Corollary 4.10, Corollary 4.11] and Corollary 2.11, Corol-
lary 2.14, Theorem 3.5, Corollary 3.9). Moreover, in this broader class, many
hypotheses for results in the original mixed multiplicity theory have been re-
moved. It seems that many results of the paper not only cover, but also are
more natural than results in the original mixed multiplicity theory. This con-
tributes to the explanation the meaning of mixed multiplicities of maximal
degrees.
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