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A DISCONTINUOUS GALERKIN METHOD
FOR A MODEL OF POPULATION DYNAMICS

Mi-Younc KMt AND Y. X. YIN

ABSTRACT. We consider a model of population dynamics whose
mortality function is unbounded. We approximate the solution of
the model using a discontinuous Galerkin finite element for the age
variable and a backward Euler for the time variable. We present
several numerical examples. It is experimentally shown that the
scheme converges at the rate of R3/2 in the case of piecewise linear
polynomial space.

1. Introduction

When modelling a population dynamics, some significant variables
should be considered. Thus, depending on the phenomenon that has to
be modelled, the population is given a structure that is often respon-
sible for special behaviors not occurring when the structure is absent.
Age is one of the most natural and important parameter structuring a
population. At the level of the single individual, many internal variables
strictly depend on the age variable since different ages provide different
reproductions, different survival capacities and different behaviors. In
this paper, we consider a nonlinear age-dependent model of population
dynamics and introduce a discontinuous Galerkin finite element method
to approximate the solution of the model. The organization of the re-
mainder of the paper is as follows. In Section 2, we introduce the basic
parameters and derive some models of population dynamics. In Section
3, we demonstrate a discretization procedure for the nonlinear model.
Finally, in Section 4, we show the numerical results.
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2. The model of the population dynamics

The simplest population model is the well-known Malthusian law. In
the model we consider a single homogeneous population. That is, we
assume that all individuals of the population are identical so that the
only variable that we have to deal with is the number of the individuals
as a function of time, p(t). We also suppose that the population lives
isolated in an invariant habitat with no limit to resources. Thus the
population is subject to constant fertility and mortality rates that we
call 8 and pu, respectively. Then the growth is governed by the following

equation:
d
2P(®) = Bp(t) = up(t).

Thus, we easily see that

Here oo = 8 — u is usually called the Malthusian parameter of the pop-
ulation.

A linear model we want to introduce is a strict analogue of the
Malthus model. We consider a single population living isolated in an
invariant habitat. We assume that all of its individuals are perfectly
equal but for their age. In particular, we assume that there are no sex
differences. According to this setting, fertility and mortality are intrin-
sic parameters of the population growth and they depend on age. Thus
the evolution of the population is described by its age density function
at time ¢,

u(a,t), a€0,a¢], t>0,

where a4 is the maximum age which an individual of the population may
reach. We assume a; < +00. The integral f;lz u(a,t)da then gives the
number of individuals at time ¢, with age in the interval [a,, a2] and

p(t) = /OaT u(a,t)da

is the total population at time t. The age specific fertility f(a) is
the number of newborns in one time unit coming from a single indi-
vidual whose age is in the infinitesimal age interval [a,a + da]. Thus
f;lz B(a)u(a,t)da gives the number of newborns in one time unit coming
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from individuals with age in [a1, a2]. The age specific mortality u(a) is
the death rate of people having age in [a,a + da]: Then the total death
rate is given by

D(t) = /0 " iayu(a t)da,

which gives the total number of deaths occurring in one time unit. We
also consider the total birth rate

= /OaT B(a)u(a,t)da

which gives the total number of newborns in one time unit. Another
meaningful quantity is the survival probability, i.e., the probability for
an individual to survive to age a, given by

I(a) = e~ Jo 4% g€ 0,a4].
Thus it must satisfy II(a;+) = 0. Moreover, the function
K(a) = f(@)TI(a), a € [0,a]

is called the maternity function and synthesize the dynamics of the pop-
ulation; it is related to the parameter

ay
R =/0 B(a)I(a)da

which is called the net reproduction rate and gives the number of the
newborns that an individual is expected to produce during his repro-
ductive life. In fact, we expect the population to show an increasing
trend when R > 1, decreasing if R < 1, stable when R = 1. The linear
model of population dynamics describes the evolution of the popula-
tion regulated by prescribed linear biological parameters. Consider the
function

N{a,t) = /Oa u(o, t)do

which represents the number of individuals that, at time ¢, age< a. Then
for h > 0 we have
(2.1)

N(a+h,t+h) = N(a,t)+ / B(s ds—// u(o,t+s)dods.
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Here ft s)ds gives the input of all newborns in the time interval
[t,t + hl, Wthh have age< h and consequently have to be included in

the number N(a + h,t + h). Moreover, since [y u(a)u(o,t + s)do
is the number of individuals who die at time ¢ + s having age < a + s,
fo &2 (o)u(o, t+s)dods gives the loss from the initial group of N(a,t)
1nd1v1duals and from the newborns, through the time interval [¢,t + h].
As the second step, we differentiate (2.1) with respect to h, and set
h = 0. We then have

(2.2) u(a,t) —I—/ ut(o,t)do = B(t) -—/ p(o)u(o, t)do.
0 0
Putting ¢ = 0, we get w(0,t) = B(t) and differentiating (2.2) with
respect to a, we get
u(a,t) + uq(a, t) + p(a)u(a,t) = 0.
Thus we obtain the following system

u(a, t) + uq(a, t) + p(a)u(a,t) =0, 0<a<ai, t>0,

(2.3) u(0,1) /,8 u(o,t)do, t>0,
u(a,0) = up(a), 0<a<ai.

Here the third equation of (2.3) is the initial condition which we have
added. The system is a basic linear model which describes the evolution
of a single population under the phenomenological conditions specified
at the beginning of this section. In order to be biologically meaningful,
we assume the followings for the basic functions §(-), u(-) and for the
initial condition uq:

B(-), u(+), uo(a) are nonnegative,
at
/ p(o)do = +o0.
0

For the mathematical treatment, we also assume that
,3() € LOO(O?GT)’ lu‘() € Llloc(o’a"f)’ Up € LI(O,CLT).

In [3], Gurtin and MacCamy introduced a nonlinear model which is
more realistic than linear one, by assuming that the fertility and mor-

tality depend on
at
p(t) = / u(a, t)da
0
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Thus 3(a) and p(a) are replaced by S(a,p(t)), u(a,p(t)), respectively.
The linear model is then modified into the following:

ui(a,t) + uq(a,t) + pla, p(t))u(a,t) =0, 0<a<a;, t>0,
u(0,t) = /ﬁap u(a,t)da, t>0,

u(a,0) = up(a), 0<a<ay,

aj
p(t) =/ u(a,t)da, t>0.
0

(2.4)

We refer to [5], for details and for the proof of the existence and unique-
ness of the solution to (2.4) and also for (2.3).

3. Discretization procedure

In this section, we introduce the discretization procedure to approxi-
mate the solution to problem (2.4). We apply a backward Euler in time
and a discontinuous Galerkin in the age variable.

We first consider the semi-discretization procedure leaving time vari-
able to be continuous. Let I = (0,a:] and let L#(I) and H'(I) be the
standard L? and Sobolev spaces on I, respectively. Then, let V = H(I)
and multiply the first equation of (2.4) for a given t by v € V and in-
tegrate over I. We then obtain, by integration by parts, the following
variational formulation: Find u(-,t) € L%(I) such that

(3.1
/ ut(a, t)v(a )da—/0 u(a,t)v’(a)da—{—/o w(a, p(t))u(a, t)v(a)da

/ B(a,p(t))ula, t)dav(0) — u(as, t)v(at), YveV.

Now let I, = (@m—1,am] and assume that I = UM_,I,,. For a given
non-negative integer q, let

Vo ={v:I— R | v|;, is a polynomial of degree < g}

be a finite dimensional subspace of V. We notice that the functions v
in V}, may be discontinuous at the discrete age level a,,. To account for
this we introduce the notation

vi(am) = sl—i>r(1)1+ v(am + ), v-(a™) = sl—i>I(I)1— v(am + 8),
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and we also define the jump [v] at the inter-node by

[v](am) = vilam) — v-(am).

If u”(-,t) and v belong to V}, then we have, by integration by parts,
that
ay
/ ul(a,t)v(a)da
0 .
62 = —uh(O,t)v(O)—/O u” (a, )0/ (a)da + u(as, B)(ar)

M
= —u(0,t)v(0) — Z/I u"(a,t)v'(a)da + u"(as, t)v(a;).

Since

we obtain, from (3.2),

/mr ul(a,t)v(a)da
0
_ h(O t) - M \ a=a,,
5.9 o (0,00(0) ~ 3 (W@, 0@
m=1 A=, 1
+ Z/ a)da +u"(as, t)v(ay).

We observe that the inflow on the boundary am 1 of I, is the outflow
on the boundary a,,_; of I,,_;. Thus, with u"(0,t) = u"(0,t), semi-
discretization of the problem (3.1) is given as follows:

M M
Z /I ul(a, t)v(a)da + Z[uh](am_l,t)v_,_(am_l)
m—lM m=1

(3.5) + Z/ ul(a, t)v(a)da

Z/ (t))u"(a, t)v(a)da, Vv € Vi,
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where u” (0,t) = [ B(a, p(t))u"(a, t)da.

Since v varies independently on each subinterval I,,,, we may alterna-
tively formulate (3.5) as follows: For m =1,--- , M, given U_(am—-1,1),
find U(a,t) = uh|;,, = u"x1,, € V;™ such that
(3.6)

Ui(a,t)v(a)da + Uy (am—1,t)v4(@m-1) — U_(am—1,t)v4(@m-1)

+ /Im Uu(a,t)v(a)da = — /Im pla, p(t)U(a,t)v(a)da, ve Vi,
where
(3.7) U-(0.6) = [ Bla o) (e, )da

Vi* ={p: I, — R|p is a polynomial of degree < g}.
Here we note that the integral equation (3.7) and p(t) are computed
using the two-point Gaussian quadrature.
For the numerical experiment, we now consider the case ¢ = 1 and

apply a backward Euler method in time variable.
We note that U(a,t) is of the form .

1
U(avt) = Z&m,i(t)cpzm(a)v on Ima
i=0
where
m 1 m 1
Yo (a) = _h_(a_am—1)+1a Y1 (a) = E‘(a—am—l), ha =0am —Am-—1-
Thus we finally obtain the following fully discretized problem: For given
n>1land 1 <m <M, find £, ;, i = 0,1 such that

(3.8)

1 - n m _ l n—1 m
e S [ e @n@da— 3 3267 [ oranieda

=0

m

+ Gt (amo1) = g yvsamo) + 36 [ (7Y (@la)do
1 i=0
= —Z;fm,i /I ] p(a, p(t™)ei (a)v(a)da,

M 1
g =3 e, / Bla, p(t™)) o™ (a)da,

m=1 =0
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where &) ; = £m,i(t") and hy =™ —t"~! is the mesh size of time. Here
we note that f?n,i’s are provided by the approximation of the initial
condition such as

1
uo(a) =D & 07(a), on In.
=0
Noting that, for 7,57 =1, 2,

1 .
/ @i (a)py (a)da = ghar 1 # 7,

Im

m( oy, ,m 1 L
| er@ep@ds=ghe, i=j,

I,

| ey @ia= [ (Y@ ea =,

m

| @@= [ @@=,

Im

we now apply v(a) = ¢i*(a), k = 0,1, to the first equation of (3.8) and

we obtain the following two equations for each m =1,--- , M:
he 1 N hae 1 N
(3ht *3 A’”) mo + <6h 3T m)gm’l
ha pe1 . ha
:3h m0+6h +§m 1,1
he 1 he 1 n
(6ht T2 )5’"0 * <3h T3 Cm)gm’l
ha
= 6h + _gm 1>
where

A = — / (e, p(t™)) (9 (a))?da,
B =— /, (@, (") (@)} (a)da,

o = — / ula, p(t)) (0T (@) da.

Im
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We notice that there are two unknowns and two equations on each I,,,.
Consequently, we have 2M equations and 2M unknowns in total and
the equations are coupled due to the birth process (2.4)2. We now move
the first equation to the last. Then, we see that the nonzero structure
of the coefficient matrix is of the form:

X X \

X X X
X X
X X X
X X
\xxxxxx...x

After simple row operations, the matrix reduces to a upper triangular
matrix and the system is then solved directly by back substitution.

4. Numerical results

In this section we present some numerical results. In the test we com-
puted the order of convergence of the algorithms by the usual formula:

E(h)

log 2

where FE(h) is the approximation error defined by
E(h) = U(t") —u(- t")]2,

for population density, where || - |2 denotes L? norm and the notation
U(:,t™), u(-,t™) denote approximate solution and exact solution, respec-
tively.

In the following example, we tested the scheme with nonlinear mor-
tality p.

EXAMPLE 4.1. We solve problem (2.4) with the following data: a; =
1, B(a,p) = 4, p(a,p) = = + p and ug(a) = w(a), given below.

We then find the exact solution of separable type u(a,t) = w(a)p(t),
where p(t) is the solution of

p = (o —p)p, p(0) =1,
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so that the total population p is given as

*

a
(a* — 1)exp(—a*t) + 1’

p(t) =

and
w(a) = 4(1 — a) exp(—a*a).

Here o* is given by the relation

Y= 1 ———1—waa
o = [ (8- Tl

and is computed as
o & 2.5569290855.

t=1.0 t=1.5
o E(R) (R E(R) ()
1/10 0.349760 | 0.958031 0.216245 | 1.1209717
1/20 0.180042 | 0.987458 0.099426 | 1.0805020
1/40 0.090807 | 0.996271 0.047015 | 1.0457960
1/80 0.045521 | 0.998827 0.022773 | 1.0243409
1/160 || 0.022779 | 0.099556 || 0.011196 | 1.0124237
1/320 0.011393 | 0.999873 0.005550 1.0062522

Table 1. Convergence estimates for Example 4.1.

We then note that the compatibility condition

ed mortality p.
EXAMPLE 4.2. We solve problem (2.4) with the

given below.

We then find the exact solution of separable type u(a, t) = wow(a)p(t),

where p(t) is the solution of
P=a'p, p(0)=1,
so that the total population p is given as

p(t) = exp(a’t),

at (0,0) is satisfied,
which guarantees the continuity of the solution u(a,t). In the approxi-
mation, we lag the coefficients to compute the nonlinear terms. Table 1
shows the convergence estimates of the scheme applied to the problem.

In the following example, we tested the scheme with linear and bound-

following data: at =
1, B(a) = 20a(1 — a), p(a) = 10exp(-100(1 — a)) and uo(a) = w(a),
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and

w(a) = exp(— /0 " uE)de - o*a).

Here o* is given by the relation

1
1= /0 B(a)wada

and is computed as
o = 2.78576939.

wp is also given by the relation

1
1=/ wow(a)da
0

and is computed as
wo ~ 2.9669447356.

As in Example 1, the compatibility condition at (0, 0) is satisfied, which
guarantees the continuity of the solution u(a,t).

We used Gaussian quadrature in the computation of the integral.
Tables 2-3 show the estimated order of convergence with mesh sizes h,
and h; satisfying hy/h, = % and h;/ (ha)% = %, respectively.

In the following example, we tested the scheme with unbounded mor-
tality u.

ExAMPLE 4.3. We solve problem (2.4) with the following data: a; =

1, B(a)=e¢e, up(a)= = and ug(a)=w(a), given below.

1—a
We then find the exact solution of separable type u(a,t) = w(a)p(t),
where
p(t) = exp(t)
and
w(a) = (1 — a) exp(—a).
Tables 4-5 show the estimated order of convergence with mesh sizes h,
3
and h, satisfying hy/h, = % and hy/hE = %, respectively.
In all Examples 1-3, we have computed the order of convergence with
mesh sizes h; and h, satisfying the CFL condition. Our numerical ex-

periments show that the rate of convergence is O(h3/2), which is the
expected result when the discontinuous Galerkin finite element method
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t=1.0

t=1.5

ha

E(h)

r(h)

E(h)

r(h)

1740

0.544225

0.981742

3.078201

0.980551

1/80

0.275578

0.990576

1.559989

0.990027

1/160

0.138692

0.995243

0.785405

0.994970

1/320

0.069575

0.997617

0.394074

0.997476

1/640

0.034845

0.998799

0.197382

0.998728

Table 2. Convergence estimates for Example 4.2 with h;/h,

t=1.0 t=1.5
R E(R) 7(h) E(Rh) r(h)

1/16 || 0.625167 | 1.498192 || 3.693625 | 1.497120
1/32 || 0.221307 | 1.457412 || 1.308503 | 1.450494
1/64 || 0.080588 | 1.844685 || 0.478776 | 1.843776

3
Table 3. Convergence estimates for Example 4.2 with h;/hé =

t=1.0 t=1.5
ha E(h) r(h) E(h) r(h)
1/8 0.037641 | 0.955579 || 0.088485 | 0.922937
1/16 0.019409 | 0.985136 || 0.046670 | 0.965967
1/32 || 0.009805 { 0.994272 || 0.023892 | 0.983907
1/64 || 0.004922 | 0.997657 || 0.012080 | 0.992376
1/128 || 0.002465 | 0.999414 || 0.006072 | 0.996203

Table 4. Convergence estimates for Example 4.3 with h;/h, =

t=1.0 t=1.5
Foa E(R) 7(h) E(R) ()
1/16 0.006143 | 1.536240 || 0.013687 | 1.500920
1/32 | 0.002118 | 1.552631 || 0.004836 | 1.523636
1/64 0.000722 | 1.553340 (| 0.001682 | 1.528609
1/128 || 0.000246 | 1.533123 || 0.000583 | 1.529140

DOk

=

|—=

3
Table 5. Convergence estimates for Example 4.3 with h,/hd =

Ni=

with piecewise linear polynomial space is applied: Here we notice that
the rate of convergence does not deteriorate even if the coefficient func-
tion is unbounded. Theoretical estimate for the rate of convergence is
provided in [8].

We also see that, if we take the mesh of h; = %ha (which means
relatively large time step size), then the convergence is slow. On the
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other hand, if we take the mesh of h; = %hz/ 2, (which means relatively
small time step size), then the convergence is fast. It would be better to
use the Crank-Nicolson method in time combining with a discontinuous
Galerkin method in age to have fast convergence while keeping relatively
large time step size.

(1]
[2]
(3]
4]
(5]
[6]
[7]

References

M. B. Allen and E. L. Isaacson, Numerical Analysis For Applied Science, John
wiley & sons, 1998.

R. L. Burden and J. D. Faires, Numerical Analysis, Brooks/Cole Publishing Com-
pany, 1997.

M. Gurtin and R. C. MacCamy, Non-linear age-dependent population dynamics,
Archs Ration. Mech. Analysis 54 (1974), 281-300.

R. Haberman, Elementary Applied Partial Differential Equations with Fourier
Series and Boundary Vealue Problems, Third Edition, Prentice-Hall, 1998.

M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Gia-
rdini Editori E Stampatori, Pisa, 1994.

C. Johnson, Numerical Solution of Partial Differential Equations by the Finite
Element Method, The Cambridge University Press, 1987.

M.-Y. Kim and Y. Kwon, A collocation method for the Gurtin-MacCamy equation
with finite life-span, SIAM J. Numer. Anal. 39 (2002), no. 6, 1914-1937.

M.-Y. Kim, Discontinuous Galerkin method for the Lotka-McKendrick equation
with finite life-span, Preprint.

Department of Mathematics

Inha University

Incheon 402-751, Korea

E-mail: mykim@math.inha.ac.kr
yxyin@math.inha.ac.kr



