• Title/Summary/Keyword: Euler integrals

Search Result 19, Processing Time 0.021 seconds

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

SPECIAL VALUES AND INTEGRAL REPRESENTATIONS FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

  • Hu, Su;Kim, Daeyeoul;Kim, Min-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.185-210
    • /
    • 2018
  • The Hurwitz-type Euler zeta function is defined as a deformation of the Hurwitz zeta function: $${\zeta}_E(s,x)={\sum_{n=0}^{\infty}}{\frac{(-1)^n}{(n+x)^s}}$$. In this paper, by using the method of Fourier expansions, we shall evaluate several integrals with integrands involving Hurwitz-type Euler zeta functions ${\zeta}_E(s,x)$. Furthermore, the relations between the values of a class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational arguments have also been given.

NOTE ON CAHEN′S INTEGRAL FORMULAS

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We present an explicit form for a class of definite integrals whose special cases include some definite integrals evaluated, over a century ago, by Cahen who made use of an appropriate contour integral for the integrand of a well-known integral representation of the Riemann Zeta function given in (3). Furthermore another analogous class of definite integral formulas and some identities involving Riemann Zeta function and Euler numbers En are also obtained as by-products.

SOME IDENTITIES INVOLVING THE LEGENDRE'S CHI-FUNCTION

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.219-225
    • /
    • 2007
  • Since the time of Euler, the dilogarithm and polylogarithm functions have been studied by many mathematicians who used various notations for the dilogarithm function $Li_2(z)$. These functions are related to many other mathematical functions and have a variety of application. The main objective of this paper is to present corrected versions of two equivalent factorization formulas involving the Legendre's Chi-function $\chi_2$ and an evaluation of a class of integrals which is useful to evaluate some integrals associated with the dilogarithm function.

SOME IDENTITIES OF DEGENERATE GENOCCHI POLYNOMIALS

  • Lim, Dongkyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.569-579
    • /
    • 2016
  • L. Carlitz introduced higher order degenerate Euler polynomials in [4, 5] and studied a degenerate Staudt-Clausen theorem in [4]. D. S. Kim and T. Kim gave some formulas and identities of degenerate Euler polynomials which are derived from the fermionic p-adic integrals on ${\mathbb{Z}}_p$ (see [9]). In this paper, we introduce higher order degenerate Genocchi polynomials. And we give some formulas and identities of degenerate Genocchi polynomials which are derived from the fermionic p-adic integrals on ${\mathbb{Z}}_p$.

A NEW CLASS OF EULER TYPE INTEGRAL OPERATORS INVOLVING MULTIINDEX MITTAG-LEFFLER FUNCTION

  • Khan, Nabiullah;Ghayasuddin, Mohd.;Shadab, Mohd
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.691-700
    • /
    • 2018
  • The main object of the present research paper is to establish two (potentially) useful Euler type integrals involving multiindex Mittag-Leffler functions, which are expressed in terms of Wright hypergeometric functions. Some deductions of the main results are also indicated.

LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.137-146
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. The main object of this paper is to present explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function.