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NOTE ON CAHEN’S INTEGRAL FORMULAS

JUNESANG CHOI

ABSTRACT. We present an explicit form for a class of definite inte-
grals whose special cases include some definite integrals evaluated,
over a century ago, by Cahen who made use of an appropriate
contour integral for the integrand of a well-known integral repre-
sentation of the Riemann Zeta function given in (3). Furthermore
another analogous class of definite integral formulas and some iden-
tities involving Riemann Zeta function and Euler numbers Ey, are
also obtained as by-products.

We begin by recalling the definitions of Riemann Zeta function ((s)
and Hurwitz (or generalized) Zeta function ((s,a):

(1) ()= = (R(:)>1)

k=1

and
= 1
2)  ((s,a):= g::o Ty (R(s) >1; a#0, -1, -2, =3, ...).

Both functions can be continued analytically to the whole complex s-
plane except for a simple pole at s = 1 with their residues 1 usually by
the contour or some other integral representations (cf. [5, p.266]; [3,

p. 33]).
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The following integral representation for {(s) is well-known [5, p. 266):

1 e 9] zs—l
©=ri ), wor

1 ! (—1n )t . s
15 | T (B> 1),

3)

where I'(s) denotes the familiar Gamma function [3, p. 1].
Cahen integrated the function f(z) defined by

@) f2) :=(—jililiii (seN\{1}, N:={1,2,3,...})

along the contour (0 < § < 1 — ¢ and € > 0) in Figure 1 and gave some
definite integral formulas.

Here we first present an explicit formula for a class of definite integrals
including Cahen’s formulas [1, pp.110-111] as special cases. In fact, we
integrate f(z) in (4) with plus sign, using Cauchy-Goursat theorem (2,
p. 106], along the contour in Figure 1 and take the limits ¢ — 04 and
& — 0+ in the resulting integral. One obtains

_ 1m)®
0= (1) T(s)¢ls)
(5) Z's+1 ™ 03—1 1 (11’1:17 s Ns—1
+ i)
—d — dx.
t /0 tan & 0+/0 1+ &
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Figure 1 Figure 2
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By applying the binomial theorem to (In z+im)*~*, (5) may be rewrit-
ten in an equivalent form:

T = 2 (-1 () ¢(s) + E

o tan% S
s—1 1 k
s—1 . ys—k—1 (lnx)
2 kEZI < i ) (im) /0 o dzx.

Setting s = 2n in (6) and using an elementary identity to separate real
and imaginary parts

,L's-f—l

(6)

—2(@im)* 1 1n 2

2n-—1 n—1 n
(7) Do A=) Aw+Y Ani,
k=1 k=1 k=1

we, by virtue of the following known integral formulas (c¢f. [4, p. 546,
Entry 4.271)):

(8) /0 e (19 @RICb+T) (ke

1+

and

142z

1 1 2k—1
(9) / (—”)—-dx =(2'"% —-1) (2k - 1)!1¢(2k) (k€N),
0
get a class of definite integral formulas and a recurrence relation for {(s):

T 92n-—1 n-1 n—1
df=27""11n2+2 (—1)k< )(2k)!
(10) /0 tan 2 ; 2k

x pnT2k=l (197 ¢(2k+1) (n€N),

where the empty sum is interpreted (as usual, in what follows) to be nil;

2 g (—1)* @Z - i) (2k — 1)l w?r=2F (2172F 1) ¢(2k)

2n

=2(-1)" (2n - 1)!¢(2n) + 7;—n (n € N).

(11)
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If we set s = 2n + 1 in (6), we, similarly, obtain

T 2n
/ d = df = 2m°" In 2+ 2(—1)" (2n)!¢(2n + 1)
o tans

(12) - 2n
+2 kZ:l (—1)* (2k> (2k)!

x w22k (1 -27%) ¢(2k +1) (n € N);

L § 2n
(13) e ; (-1)* <2k - 1) (2k — 1)!
x w7 (2172 — 1) ¢(2k) (n €N).

Next integrate the function f(z) in (4) with minus sign along the
contour in Figure 2. We get

im\°  (=i)stl [F gl
(14) o:r(s)g(s)+-l—(——> ) /0 f 5 d8+ 1(s),

2 tan 3

where, for convenience, we put

I(s)
s - = — Ty s—k-1 1 (hl )k
gy =~ () )T B
e S (1) ()7 e [ e

Similarly as above, now using (8), (9), and known integral formulas
(cf. [4, p-546, Entry 4.271)):

L (lnz)* —1)% k!
06) [ B%ae- CXE (c(hr1h) —ck+1 )} ke

1 2k [e¢] 1 2k
/ (nz)* =1 / (Inz)=
0 1+$2 2 0 1+(I:2

- (—21)'“ (g)%“ By (keN),

(17)
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where Fsy are Euler numbers defined by the generating function

2e* = P m
(18) m = sechz = kz-o Ey F <|Z| < 5) ,
we get the following identities:
3 g2n-1 7y 2n—1
dd = (= 1
/0 tang (2) n2
n—1
2n—1
YN 2k)!
w3 e () e
(19) x w22kl (1 972k ¢(2k + 1)
. 2n—1
- 1k - — 1)1
23 (-1) <2k_1) (2k — 1)!
k=1
2n—2k

X S (026 1) —C (2 3)} (neN)

In2+2(-1)"2n)!I¢2n +1)
+ 3 (-1 @Z) (2k)!
x (%)Qn_% (27%F — 274 ¢(2k + 1)

5 (—1)* <2k2f 1) (2k — 1)1

k=1

ol 3

x (g)%_ml 2!~ {¢ (2K, 1) — ¢ (2k,3)} (neN)
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If use is made of an identity for Euler numbers:

(22) Xn: @Z) Ba=0 (neN),

k=0

the companion of (21) can be seen to correspond to (13).

(1]
(2]

(5]
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