SOME IDENTITIES OF DEGENERATE GENOCCHI POLYNOMIALS

Dongkyu Lim

Abstract

L. Carlitz introduced higher order degenerate Euler polynomials in $[4,5]$ and studied a degenerate Staudt-Clausen theorem in [4]. D. S. Kim and T. Kim gave some formulas and identities of degenerate Euler polynomials which are derived from the fermionic p-adic integrals on \mathbb{Z}_{p} (see [9]). In this paper, we introduce higher order degenerate Genocchi polynomials. And we give some formulas and identities of degenerate Genocchi polynomials which are derived from the fermionic p-adic integrals on \mathbb{Z}_{p}.

1. Introduction

Let p be an odd prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}. Let $|\cdot|_{p}$ be the p-adic norm with $|p|_{p}=1 / p$. For f in the space of continuous functions on \mathbb{Z}_{p}, the fermionic p-adic integrals on \mathbb{Z}_{p} is introduced by Kim to be

$$
\begin{equation*}
I_{-1}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1} f(x)(-1)^{x} \quad(\text { see }[15,18,22]) \tag{1}
\end{equation*}
$$

There are many works related with fermionic p-adic integrals (see [15, 18, $22]$). From (1), we note the integral equation as follows:

$$
\begin{equation*}
I_{-1}\left(f_{1}\right)+I_{-1}(f)=2 f(0), \quad \text { where } \quad f_{1}(x)=f(x+1) \tag{2}
\end{equation*}
$$

and iterated integral equation:

$$
\begin{equation*}
I_{-1}\left(f_{n}\right)+(-1)^{n-1} I_{-1}(f)=2 \sum_{l=0}^{n-1}(-1)^{n-1-l} f(l) \quad(\text { see }[15,18,22]) \tag{3}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $f_{n}(x)=f(x+n)$.

By (1), we easily get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} f(x) d \mu_{-1}(x)=\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}} f(a+d x) d \mu_{-1}(x), \tag{4}
\end{equation*}
$$

where $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$.
For $r \in \mathbb{Z}_{+}(=\mathbb{N} \cup\{0\})$ and $\lambda, t \in \mathbb{Z}_{p}$ with $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$, the degenerate Genocchi polynomials $\mathcal{G}_{n}^{(r)}(\lambda, x)$ of order r are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{2 t}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(r)}(\lambda, x) \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

When $x=0, \mathcal{G}_{n}^{(r)}(\lambda)=\mathcal{G}_{n}^{(r)}(\lambda, 0)$ are called the degenerate Genocchi numbers of order r.

From (2), we note that

$$
\begin{align*}
& t^{r} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+\cdots+x_{r}+x\right) t} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{6}\\
= & \left(\frac{2 t}{e^{t}+1}\right)^{r} e^{x t} \\
= & \sum_{n=0}^{\infty} G_{n}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[7,21,24,27,31]),
\end{align*}
$$

where $G_{n}^{(r)}(x)$ are called the Genocchi polynomials of order r. When $x=0$, $G_{n}^{(r)}=G_{n}^{(r)}(0)$ are called the Genocchi numbers of order r.

By (6), we have $G_{0}^{(r)}(x)=G_{1}^{(r)}(x)=\cdots=G_{r-1}^{(r)}(x)=0$, thus we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x\right)^{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right)=\frac{G_{n+r}^{(r)}(x)}{(n+r)_{r}} \tag{7}
\end{equation*}
$$

where $n \geq 0$ and $(n)_{r}=n(n-1) \cdots(n-r+1)=\sum_{l=0}^{r} S_{1}(r, l) n^{l}$.
There have been many works related with various degenerate polynomials. For example, many authors apply degenerate polynomials to Boole polynomials in [8] and to Barnes-type Bernoulli polynomials in [11]. Degenerate polynomials related with higher order Euler polynomials is investigated by D. S. Kim and T. Kim in [10]. Also, Genocchi polynomials are studied by many authors (see [1-3, 6, 15-32]). The first paper, which introduces the q-extension of Genocchi numbers and polynomials, is [18] by Kim.

With the viewpoint of (7), we consider the degenerate Genocchi polynomials which can be represented by the multivariate fermionic p-adic integrals on \mathbb{Z}_{p}. The purpose of this paper is to give some formulas and identities of higher order degenerate Genocchi polynomials which are derived from the multivariate fermionic p-adic integrals on \mathbb{Z}_{p}.

2. Some identities of higher order degenerate Genocchi polynomials

In this section, we assume that $\lambda, t \in \mathbb{Z}_{p}$ with $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$. Let us take

$$
f\left(x_{1}, x_{2}, \ldots, x_{r}, x\right)=(1+\lambda t)^{\frac{x_{1}+\cdots+x_{r}+x}{\lambda}} .
$$

Then, by (2), we get

$$
\begin{align*}
& t^{r} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}(1+\lambda t)^{\frac{x_{1}+\cdots+x_{r}+x}{\lambda}} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \tag{8}\\
= & \left(\frac{2 t}{(1+\lambda t)^{\frac{1}{\lambda}}+1}\right)^{r}(1+\lambda t)^{\frac{x}{\lambda}} .
\end{align*}
$$

From (5) and (8), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} t^{r} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \frac{\lambda^{n} t^{n}}{n!} \tag{9}\\
= & \sum_{n=0}^{\infty} \mathcal{G}_{n}^{(r)}(\lambda, x) \frac{t^{n}}{n!} .
\end{align*}
$$

Now, we define $(x \mid \lambda)_{n}$ as

$$
\begin{align*}
(x \mid \lambda)_{n} & =x(x-\lambda)(x-2 \lambda) \cdots(x-(n-1) \lambda) \tag{10}\\
& =\lambda^{n}\left(\frac{x}{\lambda}\right)\left(\frac{x}{\lambda}-1\right)\left(\frac{x}{\lambda}-2\right) \cdots\left(\frac{x}{\lambda}-n+1\right) \\
& =\lambda^{n}\left(\frac{x}{\lambda}\right)_{n}, \quad(n \geq 0) .
\end{align*}
$$

From (9), (10) and the fact that $\mathcal{G}_{0}^{(r)}(\lambda, x)=\mathcal{G}_{1}^{(r)}(\lambda, x)=\cdots=\mathcal{G}_{r-1}^{(r)}(\lambda, x)=$ 0 , we can derive the Witt-type formula for $\mathcal{G}_{n}^{(r)}(\lambda, x)$ as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x \mid \lambda\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right)=\frac{\mathcal{G}_{n+r}^{(r)}(\lambda, x)}{(n+r)_{r}}, \quad(n \geq 0) . \tag{11}
\end{equation*}
$$

Therefore, by (11), we obtain the following theorem.
Theorem 2.1. For $n \geq 0$, we have

$$
\begin{aligned}
\frac{\mathcal{G}_{n+r}^{(r)}(\lambda, x)}{(n+r)_{r}} & =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x \mid \lambda\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
& =\lambda^{n} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)_{n} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) .
\end{aligned}
$$

Now, we observe that

$$
\begin{equation*}
\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)_{n}=\sum_{l=0}^{n} S_{1}(n, l)\left(\frac{x_{1}+\cdots+x_{r}+x}{\lambda}\right)^{l} . \tag{12}
\end{equation*}
$$

By Theorem 2.1 and (12), we get

$$
\begin{align*}
& \frac{\mathcal{G}_{n+r}^{(r)}(\lambda, x)}{(n+r)_{r}} \tag{13}\\
= & \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x_{1}+\cdots+x_{r}+x\right)^{l} d \mu_{-1}\left(x_{1}\right) \cdots d \mu_{-1}\left(x_{r}\right) \\
= & \sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \frac{G_{l+r}^{(r)}(x)}{(l+r)_{r}} .
\end{align*}
$$

Therefore, by (13), we obtain the following corollary.
Corollary 2.2. For $n \geq 0$, we have

$$
\frac{\mathcal{G}_{n+r}^{(r)}(\lambda, x)}{(n+r)_{r}}=\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \frac{G_{l+r}^{(r)}(x)}{(l+r)_{r}} .
$$

By replacing t with $\frac{1}{\lambda}\left(e^{\lambda t}-1\right)$ in (5), we get

$$
\begin{align*}
\left(\frac{2 t}{e^{t}+1}\right)^{r} e^{x t} & =\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(r)}(\lambda, x) \frac{1}{n!\lambda^{n}}\left(e^{\lambda t}-1\right)^{n} \tag{14}\\
& =\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(r)}(\lambda, x) \frac{1}{\lambda^{n}} \sum_{m=n}^{\infty} S_{2}(m, n) \frac{\lambda^{m} t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{G}_{n}^{(r)}(\lambda, x) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!},
\end{align*}
$$

where $S_{2}(m, n)$ is the Stirling number of the second kind.
Therefore by (6) and (14), we obtain the following theorem.
Theorem 2.3. For $n \geq 0$, we have

$$
G_{m}^{(r)}(x)=\sum_{n=0}^{m} \mathcal{G}_{n}^{(r)}(\lambda, x) \lambda^{m-n} S_{2}(m, n)
$$

When $r=1, G_{n}(\lambda, x)=G_{n}^{(1)}(\lambda, x)$ are called the degenerate Genocchi polynomials. In particular, $x=0, G_{n}(\lambda)=G_{n}(\lambda, 0)$ are called the degenerate Genocchi numbers.

Thus by Theorem 2.1 and (7), we get

$$
\begin{align*}
\frac{\mathcal{G}_{n+1}(\lambda, x)}{n+1} & =\int_{\mathbb{Z}_{p}}(y+x \mid \lambda)_{n} d \mu_{-1}(y) \tag{15}\\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\left(\frac{y+x}{\lambda}\right)_{n} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \int_{\mathbb{Z}_{p}}(y+x)^{l} d \mu_{-1}(y)
\end{align*}
$$

$$
=\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \frac{G_{l+1}(x)}{l+1},
$$

and

$$
\begin{align*}
\frac{\mathcal{G}_{n+1}(\lambda)}{n+1} & =\int_{\mathbb{Z}_{p}}(y \mid \lambda)_{n} d \mu_{-1}(y) \tag{16}\\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\left(\frac{y}{\lambda}\right)_{n} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l} \frac{G_{l+1}}{l+1} .
\end{align*}
$$

For $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, from (3), (15) and (16), we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}(y+d \mid \lambda)_{n} d \mu_{-1}(y)+\int_{\mathbb{Z}_{p}}(y \mid \lambda)_{n} d \mu_{-1}(y)=2 \sum_{l=0}^{d-1}(-1)^{l}(l \mid \lambda)_{n} . \tag{17}
\end{equation*}
$$

Thus, by (17), we get

$$
\begin{align*}
\frac{\mathcal{G}_{n+1}(\lambda, d)}{n+1}+\frac{\mathcal{G}_{n+1}(\lambda)}{n+1} & =2 \sum_{l=0}^{d-1}(-1)^{l}(l \mid \lambda)_{n} \tag{18}\\
& =2 \sum_{m=0}^{n} \sum_{l=0}^{d-1}(-1)^{l} \lambda^{n-m} S_{1}(n, m) l^{m} .
\end{align*}
$$

Therefore, by (18), we obtain the following theorem.
Theorem 2.4. For $n \geq 0, d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
\begin{aligned}
\frac{\mathcal{G}_{n+1}(\lambda, d)+\mathcal{G}_{n+1}(\lambda)}{2(n+1)} & =\sum_{l=0}^{d-1}(-1)^{l}(l \mid \lambda)_{n} \\
& =\sum_{m=0}^{n} \sum_{l=0}^{d-1}(-1)^{l} \lambda^{n-m} S_{1}(n, m) l^{m} .
\end{aligned}
$$

From (4), we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}(y \mid \lambda)_{n} d \mu_{-1}(y) & =\sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}}(a+d y \mid \lambda)_{n} d \mu_{-1}(y) \tag{19}\\
& =d^{n} \sum_{a=0}^{d-1}(-1)^{a} \int_{\mathbb{Z}_{p}}\left(\frac{a}{d}+y \left\lvert\, \frac{\lambda}{d}\right.\right)_{n} d \mu_{-1}(y) \\
& =d^{n} \sum_{a=0}^{d-1}(-1)^{a} \frac{\mathcal{G}_{n+1}\left(\frac{\lambda}{d}, \frac{a}{d}\right)}{n+1},
\end{align*}
$$

where $n \geq 0$ and $d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$.
Therefore, by (19), we obtain the following theorem.

Theorem 2.5. For $n \geq 0, d \in \mathbb{N}$ with $d \equiv 1(\bmod 2)$, we have

$$
\mathcal{G}_{n+1}(\lambda)=d^{n} \sum_{a=0}^{d-1}(-1)^{a} \mathcal{G}_{n+1}\left(\frac{\lambda}{d}, \frac{a}{d}\right)
$$

Moreover,

$$
\mathcal{G}_{n+1}(\lambda, x)=d^{n} \sum_{a=0}^{d-1}(-1)^{a} \mathcal{G}_{n+1}\left(\frac{\lambda}{d}, \frac{a+x}{d}\right)
$$

Now, we consider the degenerate Genocchi polynomials of the second kind as follows:

$$
\begin{equation*}
\frac{\hat{\mathcal{G}}_{n+1}(\lambda, x)}{n+1}=\int_{\mathbb{Z}_{p}}(-(y+x) \mid \lambda)_{n} d \mu_{-1}(y), \quad\left(n \geq 0, \quad \hat{\mathcal{G}}_{0}(\lambda, x)=0\right) \tag{20}
\end{equation*}
$$

Then, by (20), we see that

$$
\begin{align*}
\sum_{n=0}^{\infty} \hat{\mathcal{G}}_{n}(\lambda, x) \frac{t^{n}}{n!} & =t \int_{\mathbb{Z}_{p}} \sum_{n=0}^{\infty} \lambda^{n}\binom{-\frac{y+x}{\lambda}}{n} t^{n} d \mu_{-1}(y) \tag{21}\\
& =t(1+\lambda t)^{-\frac{x}{\lambda}} \int_{\mathbb{Z}_{p}}(1+\lambda t)^{-\frac{y}{\lambda}} d \mu_{-1}(y) \\
& =\frac{2 t}{(1+\lambda t)^{\frac{1}{\lambda}}+1}(1+\lambda t)^{\frac{1-x}{\lambda}}
\end{align*}
$$

Thus, we see that the generating function for the degenerate Genocchi polynomials of the second is as follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \hat{\mathcal{G}}_{n}(\lambda, x) \frac{t^{n}}{n!}=\frac{2 t}{(1+\lambda t)^{\frac{1}{\lambda}}+1}(1+\lambda t)^{\frac{1-x}{\lambda}} \tag{22}
\end{equation*}
$$

where $\hat{\mathcal{G}}_{0}(\lambda, x)=0$. When $x=0, \hat{\mathcal{G}}_{n}(\lambda)=\hat{\mathcal{G}}_{n}(\lambda, 0)$ are called the degenerate Genocchi numbers of the second kind.

From (20) and the fact $\hat{\mathcal{G}_{0}}(\lambda, x)=0$, we note that

$$
\begin{align*}
\frac{\hat{\mathcal{G}}_{n+1}(\lambda, x)}{n+1} & =\int_{\mathbb{Z}_{p}}(-(y+x) \mid \lambda)_{n} d \mu_{-1}(y) \tag{23}\\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\left(-\frac{y+x}{\lambda}\right)_{n} d \mu_{-1}(y) \\
& =\lambda^{n} \sum_{l=0}^{n} S_{1}(n, l) \frac{(-1)^{l}}{\lambda^{l}} \int_{\mathbb{Z}_{p}}(y+x)^{l} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \lambda^{n-l}(-1)^{l} \frac{G_{l+1}(x)}{l+1} \\
& =\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right] \lambda^{n-l}(-1)^{n} \frac{G_{l+1}(x)}{l+1}
\end{align*}
$$

where $\left[\begin{array}{c}n \\ l\end{array}\right]=(-1)^{n-l} S_{1}(n, l)=\left|S_{1}(n, l)\right|$.
Therefore, by (23), we obtain the following theorem.
Theorem 2.6. For $n \geq 0$, we have

$$
(-1)^{n} \frac{\hat{\mathcal{G}}_{n+1}(\lambda, x)}{n+1}=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right] \lambda^{n-l} \frac{G_{l+1}(x)}{l+1} .
$$

By replacing t with $\frac{1}{\lambda}\left(e^{\lambda t}-1\right)$ in (22), we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} \hat{\mathcal{G}}_{n}(\lambda, x) \frac{1}{n!} \frac{1}{\lambda^{n}}\left(e^{\lambda t}-1\right)^{n} \tag{24}\\
= & \frac{2 t}{e^{t}+1} e^{(1-x) t} \frac{e^{\lambda t-1}}{\lambda t} \\
= & \left(\sum_{n=0}^{\infty} G_{n}(1-x) \frac{t^{n}}{n!}\right)\left(\sum_{m=0}^{\infty} \frac{S_{2}(m+1,1) \lambda^{m}}{m+1} \frac{t^{m}}{m!}\right) \\
= & \sum_{m=0}^{\infty}\left(\sum_{n=0}^{m}\binom{m}{n} G_{m-n}(1-x) \frac{\lambda^{n}}{n+1} S_{2}(n+1,1)\right) \frac{t^{m}}{m!}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{n=0}^{\infty} \hat{\mathcal{G}}_{n}(\lambda, x) \frac{1}{n!} \frac{1}{\lambda^{n}}\left(e^{\lambda t}-1\right)^{n} & =\sum_{n=0}^{\infty} \hat{\mathcal{G}}_{n}(\lambda, x) \frac{1}{\lambda^{n}} \sum_{m=n}^{\infty} S_{2}(m, n) \frac{\lambda^{m} t^{m}}{m!} \tag{25}\\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \hat{\mathcal{G}}_{n}(\lambda, x) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!}
\end{align*}
$$

Therefore, by (24) and (25), we obtain the following theorem.
Theorem 2.7. For $m \geq 0$, we have

$$
\sum_{n=0}^{m}\binom{m}{n} G_{m-n}(1-x) \frac{\lambda^{n}}{n+1} S_{2}(n+1,1)=\sum_{n=0}^{m} \hat{\mathcal{G}}_{n}(\lambda, x) \lambda^{m-n} S_{2}(m, n) .
$$

We observe that

$$
\begin{equation*}
\binom{x+y}{n}=\sum_{l=0}^{n}\binom{x}{l}\binom{y}{n-l}, \quad(n \geq 0) . \tag{26}
\end{equation*}
$$

Now, we consider

$$
\begin{align*}
\frac{(-1)^{n} \mathcal{G}_{n+1}(\lambda)}{(n+1)!} & =\frac{(-1)^{n}}{n!} \int_{\mathbb{Z}_{p}}(y \mid \lambda)_{n} d \mu_{-1}(y) \tag{27}\\
& =\lambda^{n} \int_{\mathbb{Z}_{p}}\binom{-\frac{y}{\lambda}+n-1}{n} d \mu_{-1}(y) \\
& =\lambda^{n} \sum_{l=0}^{n}\binom{n-1}{n-l} \int_{\mathbb{Z}_{p}}\binom{-\frac{y}{\lambda}}{l} d \mu_{-1}(y)
\end{align*}
$$

$$
\begin{aligned}
& =\lambda^{n} \sum_{l=0}^{n}\binom{n-1}{l-1} \frac{1}{\lambda^{l} l!} \int_{\mathbb{Z}_{p}}(-y \mid \lambda)_{l} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{\hat{\mathcal{G}}_{l+1}(\lambda)}{(l+1)!} .
\end{aligned}
$$

By the same method as (27), we also get

$$
\begin{equation*}
\frac{(-1)^{n}}{(n+1)!} \hat{\mathcal{G}}_{n+1}(\lambda)=\sum_{l=0}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{\mathcal{G}_{l+1}(\lambda)}{(l+1)!} \tag{28}
\end{equation*}
$$

Therefore, by (27) and (28), we obtain the following theorem.
Theorem 2.8. For $n \geq 0$, we have

$$
\frac{(-1)^{n}}{(n+1)!} \mathcal{G}_{n+1}(\lambda)=\sum_{l=0}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{\hat{\mathcal{G}}_{l+1}(\lambda)}{(l+1)!}
$$

and

$$
\frac{(-1)^{n}}{(n+1)!} \hat{\mathcal{G}}_{n+1}(\lambda)=\sum_{l=0}^{n}\binom{n-1}{l-1} \lambda^{n-l} \frac{\mathcal{G}_{l+1}(\lambda)}{(l+1)!} .
$$

Remark 2.9. Note that

$$
\begin{aligned}
\lim _{\lambda \rightarrow 0} \frac{1}{2}\left(\frac{\mathcal{G}_{n+1}(\lambda, d)+\mathcal{G}_{n+1}(\lambda)}{n+1}\right) & =\lim _{\lambda \rightarrow 0}\left(\sum_{m=0}^{n} \sum_{l=0}^{d-1}(-1)^{l} \lambda^{n-m} S_{1}(n, m) l^{m}\right) \\
& =\sum_{l=0}^{d-1}(-1)^{l} l^{n} \\
& =\frac{1}{2}\left(\frac{G_{n+1}(d)+G_{n+1}}{n+1}\right) .
\end{aligned}
$$

It is not difficult to show that

$$
\lim _{\lambda \rightarrow 0} \mathcal{G}_{n}(\lambda, x)=G_{n}(x) \quad \text { and } \quad \lim _{\lambda \rightarrow 0} \mathcal{G}_{n}^{(r)}(\lambda, x)=G_{n}^{(r)}(x) .
$$

From (22), we have

$$
\begin{aligned}
\hat{\mathcal{G}}_{n}(\lambda, x) & =\mathcal{G}_{n}(\lambda, 1-x) \\
& =(-1)^{n-1} \mathcal{G}_{n}(-\lambda, x), \quad(n \geq 0) .
\end{aligned}
$$

Remark 2.10. For $r \in \mathbb{Z}_{+}$and $\lambda, t \in \mathbb{Z}_{p}$ with $|\lambda t|_{p}<p^{-\frac{1}{p^{-1}}}$, the degenerate mixed Genocchi polynomials $\mathcal{G}_{n}^{*}(\lambda, x)$ are defined by the generating function to be

$$
\begin{equation*}
\frac{2 \log (1+\lambda t)}{\lambda\left\{(1+\lambda t)^{\frac{1}{\lambda}}+1\right\}}(1+\lambda t)^{\frac{x}{\lambda}}=\sum_{n=0}^{\infty} \mathcal{G}_{n}^{*}(\lambda, x) \frac{t^{n}}{n!} . \tag{29}
\end{equation*}
$$

When $x=0, \mathcal{G}_{n}^{*}(\lambda)=\mathcal{G}_{n}^{*}(\lambda, 0)$ are called the degenerate mixed Genocchi numbers.

By replacing t with $\frac{1}{\lambda}\left(e^{\lambda t}-1\right)$ in (29), we get

$$
\begin{align*}
\frac{2 t}{e^{t}+1} e^{x t} & =\sum_{n=0}^{\infty} \mathcal{G}_{n}^{*}(\lambda, x) \frac{1}{n!\lambda^{n}}\left(e^{\lambda t}-1\right)^{n} \tag{30}\\
& =\sum_{n=0}^{\infty} \mathcal{G}_{n}^{*}(\lambda, x) \frac{1}{\lambda^{n}} \sum_{m=n}^{\infty} S_{2}(m, n) \frac{\lambda^{m} t^{m}}{m!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=n}^{\infty} \mathcal{G}_{n}^{*}(\lambda, x) \lambda^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!}
\end{align*}
$$

Therefore by (6) and (30), we obtain the following theorem.
Theorem 2.11. For $n \geq 0$, we have

$$
G_{m}(x)=\sum_{n=0}^{m} \mathcal{G}_{n}^{*}(\lambda, x) \lambda^{m-n} S_{2}(m, n)
$$

By (2) and (29), we get

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} \frac{\log (1+\lambda t)}{\lambda}(1+\lambda t)^{\frac{y+x}{\lambda}} d \mu_{-1}(y) & =\left(\frac{2 \log (1+\lambda t)}{\lambda\left\{(1+\lambda t)^{\frac{1}{\lambda}}+1\right\}}\right)(1+\lambda t)^{\frac{x}{\lambda}} \tag{31}\\
& =\sum_{n=0}^{\infty} \mathcal{G}_{n}^{*}(\lambda, x) \frac{t^{n}}{n!}
\end{align*}
$$

We adopt the definition of λ-Daehee numbers from [12]. For $\lambda, t \in \mathbb{Z}_{p}$ with $|\lambda t|_{p}<p^{-\frac{1}{p-1}}$, we introduce the modified λ-Daehee numbers $D_{n, \lambda}$ by the generating function

$$
\frac{\log (1+\lambda t)}{\lambda t}=\sum_{n=0}^{\infty} D_{n, \lambda} \frac{t^{n}}{n!}
$$

On the other hand

$$
\begin{align*}
& \frac{\log (1+\lambda t)}{\lambda} \int_{\mathbb{Z}_{p}}(1+\lambda t)^{\frac{y+x}{\lambda}} d \mu_{-1}(y) \tag{32}\\
= & \frac{\log (1+\lambda t)}{\lambda t} t \int_{\mathbb{Z}_{p}}(1+\lambda t)^{\frac{y+x}{\lambda}} d \mu_{-1}(y) \\
= & \left(\sum_{m=0}^{\infty} D_{m} \frac{(\lambda t)^{m}}{m!}\right)\left(\sum_{k=0}^{\infty} \mathcal{G}_{k}(\lambda, x) \frac{t^{k}}{k!}\right) \\
= & \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} \lambda^{n-k} D_{n-k} \mathcal{G}_{k}(\lambda, x)\right) \frac{t^{k}}{k!} .
\end{align*}
$$

Thus, by (31) and (32), we have mixed degenerate Genocchi polynomials are represented by sums of products of the modified λ-Daehee numbers and
the degenerate Genocchi polynomials.

$$
\mathcal{G}_{n}^{(*)}(\lambda, x)=\sum_{k=0}^{n}\binom{n}{k} \lambda^{n-k} D_{n-k} \mathcal{G}_{k}(\lambda, x) .
$$

References

[1] S. Araci, M. Açikgöz, H. Jolany, and J. J. Seo, A unified generating function of the $q-G e n o c c h i ~ p o l y n o m i a l s ~ w i t h ~ t h e i r ~ i n t e r p o l a t i o n ~ f u n c t i o n s, ~ P r o c . ~ J a n g j e o n ~ M a t h . ~ S o c . ~$ 15 (2012), no. 2, 227-233.
[2] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 2, 247-253.
[3] I. N. Cangul, V. Kurt, H. Ozden, and Y. Simsek, On the higher-order w-q-Genocchi numbers, Adv. Stud. Contemp. Math. (Kyungshang) 19 (2009), no. 1, 39-57.
[4] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28-33.
[5] _ Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51-88.
[6] S. Gaboury, R. Tremblay, and B.-J. Fugére, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 115-123.
[7] D. Kang, J.-H. Jeong, B. J. Lee, S.-H. Rim, and S. H. Choi, Some identities of higher order Genocchi polynomials arising from higher order Genocchi basis, J. Comput. Anal. Appl. 17 (2014), no. 1, 141-146.
[8] D. S. Kim and T. Kim, A note on Boole polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 8, 627-633.
[9] __ Some identities of degenerate Euler polynomials arising from p-adic fermionic integrals on \mathbb{Z}_{p}, Integral Transforms Spec. Funct. 26 (2015), no. 4, 295-302.
[10] _ Higher-order Degenerate Euler Polynomials, Applied Mathematical Sciences, 9 (2015) no. 2, 57-73.
[11] D. S. Kim, T. Kim, D. V. Dolgy, and T. Komatsu, Barnes-type degenerate Bernoulli polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 25 (2015), no. 1, 121-146.
[12] D. S. Kim, T. Kim, S. H. Lee, and J.-J. Seo, A note on the lambda-Daehee polynomials, Int. J. Math. Anal. (Ruse) 7 (2013), no. 61-64, 3069-3080.
[13] T. Kim, A note on q-Volkenborn integration, Proc. Jangjeon Math. Soc. 8 (2005), no. 1, 13-17.
[14] _, A note on the q-Genocchi numbers and polynomials, J. Inequal. Appl. 2007 (2007), Art. ID 71452, 8 pp .

15] , On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), no. 2, 1458-1465.
[16] _, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), no. 1, 15-27.
[17] , Note on q-Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) $\mathbf{1 7}$ (2008), no. 1, 9-15.
[18] _, On the multiple q-Genocchi and Euler numbers, Russ. J. Math. Phys. 15 (2008), no. 4, 481-486.
[19] , New approach to q-Euler, Genocchi numbers and their interpolation functions, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 2, 105-112.
[20] , Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009), no. 1, 93-96.
[21] _, Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 1, 23-28.
[22] T. Kim, D. V. Dolgy, D. S. Kim, and S.-H. Rim, A note on the identities of special polynomials, Ars Combin. 113A (2014), 97-106.
[23] T. Kim, L.-C. Jang, and Y.-H. Kim, Some properties on the p-adic invariant integral on \mathbb{Z}_{p} associated with Genocchi and Bernoulli polynomials, J. Comput. Anal. Appl. 13 (2011), no. 7, 1201-1207.
[24] T. Kim, S.-H. Rim, D. V. Dolgy, and S.-H. Lee, Some identities of Genocchi polynomials arising from Genocchi basis, J. Inequal. Appl. 2013 (2013), 43, 6 pp.
[25] Y.-H. Kim, K.-W. Hwang, and T. Kim, Interpolation functions of the q-Genocchi and the q-Euler polynomials of higher order, J. Comput. Anal. Appl. 12 (2010), no. 1-B, 228-238.
[26] B. Kurt, The multiplication formulae for the Genocchi polynomials, Proc. Jangjeon Math. Soc. 13 (2010), no. 1, 89-96.
[27] H. Ozden, p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Comput. 218 (2011), no. 3, 970-973.
[28] S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin, On the q-Genocchi numbers and polynomials associated with q-zeta function, Proc. Jangjeon Math. Soc. 12 (2009), no. 3, 261-267.
[29] C. S. Ryoo, T. Kim, J. Choi, and B. Lee, On the generalized q-Genocchi numbers and polynomials of higher-order, Adv. Difference Equ. 2011 (2011), Art. ID 424809, 8 pp.
[30] H. M. Srivastava, B. Kurt, and Y. Simsek, Some families of Genocchi type polynomials and their interpolation functions, Integral Transforms Spec. Funct. 23 (2012), no. 12, 919-938.

School of Mathematical Sciences
Nankai University
Tianjin City, 300071, P. R. China
E-mail address: dgrim84@gmail.com

