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SOME IDENTITIES OF DEGENERATE GENOCCHI

POLYNOMIALS

Dongkyu Lim

Abstract. L. Carlitz introduced higher order degenerate Euler polyno-
mials in [4, 5] and studied a degenerate Staudt-Clausen theorem in [4]. D.
S. Kim and T. Kim gave some formulas and identities of degenerate Euler
polynomials which are derived from the fermionic p-adic integrals on Zp

(see [9]). In this paper, we introduce higher order degenerate Genocchi
polynomials. And we give some formulas and identities of degenerate
Genocchi polynomials which are derived from the fermionic p-adic inte-
grals on Zp.

1. Introduction

Let p be an odd prime number. Throughout this paper, Zp, Qp and Cp

will denote the ring of p-adic integers, the field of p-adic rational numbers and
the completion of algebraic closure of Qp. Let | · |p be the p-adic norm with
|p|p = 1/p. For f in the space of continuous functions on Zp, the fermionic
p-adic integrals on Zp is introduced by Kim to be

(1) I−1(f) =

∫

Zp

f(x)dµ−1(x) = lim
N→∞

pN−1
∑

x=0

f(x)(−1)x (see [15, 18, 22]).

There are many works related with fermionic p-adic integrals (see [15, 18,
22]). From (1), we note the integral equation as follows:

(2) I−1(f1) + I−1(f) = 2f(0), where f1(x) = f(x+ 1),

and iterated integral equation:

(3) I−1(fn) + (−1)n−1I−1(f) = 2
n−1
∑

l=0

(−1)n−1−lf(l) (see [15, 18, 22]),

where n ∈ N and fn(x) = f(x+ n).
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By (1), we easily get

(4)

∫

Zp

f(x)dµ−1(x) =

d−1
∑

a=0

(−1)a
∫

Zp

f(a+ dx)dµ−1(x),

where d ∈ N with d ≡ 1 (mod 2).

For r ∈ Z+(= N ∪ {0}) and λ, t ∈ Zp with |λt|p < p−
1

p−1 , the degener-

ate Genocchi polynomials G
(r)
n (λ, x) of order r are defined by the generating

function to be

(5)

(

2t

(1 + λt)
1
λ + 1

)r

(1 + λt)
x
λ =

∞
∑

n=0

G(r)
n (λ, x)

tn

n!
.

When x = 0, G
(r)
n (λ) = G

(r)
n (λ, 0) are called the degenerate Genocchi numbers

of order r.
From (2), we note that

tr
∫

Zp

· · ·

∫

Zp

e(x1+···+xr+x)tdµ−1(x1) · · · dµ−1(xr)(6)

=

(

2t

et + 1

)r

ext

=

∞
∑

n=0

G(r)
n (x)

tn

n!
(see [7, 21, 24, 27, 31]),

where G
(r)
n (x) are called the Genocchi polynomials of order r. When x = 0,

G
(r)
n = G

(r)
n (0) are called the Genocchi numbers of order r.

By (6), we have G
(r)
0 (x) = G

(r)
1 (x) = · · · = G

(r)
r−1(x) = 0, thus we get

(7)

∫

Zp

· · ·

∫

Zp

(x1 + · · ·+ xr + x)ndµ−1(x1) · · · dµ−1(xr) =
G

(r)
n+r(x)

(n+ r)r
,

where n ≥ 0 and (n)r = n(n− 1) · · · (n− r + 1) =
∑r

l=0 S1(r, l)n
l.

There have been many works related with various degenerate polynomials.
For example, many authors apply degenerate polynomials to Boole polynomials
in [8] and to Barnes-type Bernoulli polynomials in [11]. Degenerate polynomi-
als related with higher order Euler polynomials is investigated by D. S. Kim
and T. Kim in [10]. Also, Genocchi polynomials are studied by many au-
thors (see [1-3, 6, 15-32]).The first paper, which introduces the q-extension of
Genocchi numbers and polynomials, is [18] by Kim.

With the viewpoint of (7), we consider the degenerate Genocchi polynomials
which can be represented by the multivariate fermionic p-adic integrals on Zp.
The purpose of this paper is to give some formulas and identities of higher
order degenerate Genocchi polynomials which are derived from the multivariate
fermionic p-adic integrals on Zp.
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2. Some identities of higher order degenerate Genocchi polynomials

In this section, we assume that λ, t ∈ Zp with |λt|p < p−
1

p−1 . Let us take

f(x1, x2, . . . , xr, x) = (1 + λt)
x1+···+xr+x

λ .

Then, by (2), we get

tr
∫

Zp

· · ·

∫

Zp

(1 + λt)
x1+···+xr+x

λ dµ−1(x1) · · · dµ−1(xr)(8)

=

(

2t

(1 + λt)
1
λ + 1

)r

(1 + λt)
x
λ .

From (5) and (8), we have

∞
∑

n=0

tr
∫

Zp

· · ·

∫

Zp

(

x1 + · · ·+ xr + x

λ

)

n

dµ−1(x1) · · · dµ−1(xr)
λntn

n!
(9)

=

∞
∑

n=0

G(r)
n (λ, x)

tn

n!
.

Now, we define (x|λ)n as

(x|λ)n = x(x − λ)(x − 2λ) · · · (x− (n− 1)λ)(10)

= λn

(

x

λ

)(

x

λ
− 1

)(

x

λ
− 2

)

· · ·

(

x

λ
− n+ 1

)

= λn

(

x

λ

)

n

, (n ≥ 0).

From (9), (10) and the fact that G
(r)
0 (λ, x) = G

(r)
1 (λ, x) = · · · = G

(r)
r−1(λ, x) =

0, we can derive the Witt-type formula for G
(r)
n (λ, x) as follows:

(11)
∫

Zp

· · ·

∫

Zp

(x1+ · · ·+xr +x|λ)ndµ−1(x1) · · · dµ−1(xr) =
G
(r)
n+r(λ, x)

(n+ r)r
, (n ≥ 0).

Therefore, by (11), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have

G
(r)
n+r(λ, x)

(n+ r)r
=

∫

Zp

· · ·

∫

Zp

(x1 + · · ·+ xr + x|λ)ndµ−1(x1) · · · dµ−1(xr)

= λn

∫

Zp

· · ·

∫

Zp

(

x1 + · · ·+ xr + x

λ

)

n

dµ−1(x1) · · · dµ−1(xr).

Now, we observe that

(12)

(

x1 + · · ·+ xr + x

λ

)

n

=

n
∑

l=0

S1(n, l)

(

x1 + · · ·+ xr + x

λ

)l

.
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By Theorem 2.1 and (12), we get

G
(r)
n+r(λ, x)

(n+ r)r
(13)

=
n
∑

l=0

S1(n, l)λ
n−l

∫

Zp

· · ·

∫

Zp

(x1 + · · ·+ xr + x)ldµ−1(x1) · · · dµ−1(xr)

=

n
∑

l=0

S1(n, l)λ
n−l

G
(r)
l+r(x)

(l + r)r
.

Therefore, by (13), we obtain the following corollary.

Corollary 2.2. For n ≥ 0, we have

G
(r)
n+r(λ, x)

(n+ r)r
=

n
∑

l=0

S1(n, l)λ
n−l

G
(r)
l+r(x)

(l + r)r
.

By replacing t with 1
λ
(eλt − 1) in (5), we get

(

2t

et + 1

)r

ext =

∞
∑

n=0

G(r)
n (λ, x)

1

n!λn
(eλt − 1)n(14)

=

∞
∑

n=0

G(r)
n (λ, x)

1

λn

∞
∑

m=n

S2(m,n)
λmtm

m!

=

∞
∑

m=0

( m
∑

n=0

G(r)
n (λ, x)λm−nS2(m,n)

)

tm

m!
,

where S2(m,n) is the Stirling number of the second kind.
Therefore by (6) and (14), we obtain the following theorem.

Theorem 2.3. For n ≥ 0, we have

G(r)
m (x) =

m
∑

n=0

G(r)
n (λ, x)λm−nS2(m,n).

When r = 1, Gn(λ, x) = G
(1)
n (λ, x) are called the degenerate Genocchi

polynomials. In particular, x = 0, Gn(λ) = Gn(λ, 0) are called the degenerate
Genocchi numbers.

Thus by Theorem 2.1 and (7), we get

Gn+1(λ, x)

n+ 1
=

∫

Zp

(y + x|λ)ndµ−1(y)(15)

= λn

∫

Zp

(

y + x

λ

)

n

dµ−1(y)

=

n
∑

l=0

S1(n, l)λ
n−l

∫

Zp

(y + x)ldµ−1(y)
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=

n
∑

l=0

S1(n, l)λ
n−lGl+1(x)

l + 1
,

and

Gn+1(λ)

n+ 1
=

∫

Zp

(y|λ)ndµ−1(y)(16)

= λn

∫

Zp

(

y

λ

)

n

dµ−1(y)

=
n
∑

l=0

S1(n, l)λ
n−lGl+1

l+ 1
.

For d ∈ N with d ≡ 1 (mod 2), from (3), (15) and (16), we have

(17)

∫

Zp

(y + d|λ)ndµ−1(y) +

∫

Zp

(y|λ)ndµ−1(y) = 2
d−1
∑

l=0

(−1)l(l|λ)n.

Thus, by (17), we get

Gn+1(λ, d)

n+ 1
+

Gn+1(λ)

n+ 1
= 2

d−1
∑

l=0

(−1)l(l|λ)n(18)

= 2

n
∑

m=0

d−1
∑

l=0

(−1)lλn−mS1(n,m)lm.

Therefore, by (18), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, d ∈ N with d ≡ 1 (mod 2), we have

Gn+1(λ, d) + Gn+1(λ)

2(n+ 1)
=

d−1
∑

l=0

(−1)l(l|λ)n

=

n
∑

m=0

d−1
∑

l=0

(−1)lλn−mS1(n,m)lm.

From (4), we have

∫

Zp

(y|λ)ndµ−1(y) =

d−1
∑

a=0

(−1)a
∫

Zp

(a+ dy|λ)ndµ−1(y)(19)

= dn
d−1
∑

a=0

(−1)a
∫

Zp

(

a

d
+ y

∣

∣

∣

∣

λ

d

)

n

dµ−1(y)

= dn
d−1
∑

a=0

(−1)a
Gn+1(

λ
d
, a
d
)

n+ 1
,

where n ≥ 0 and d ∈ N with d ≡ 1 (mod 2).
Therefore, by (19), we obtain the following theorem.
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Theorem 2.5. For n ≥ 0, d ∈ N with d ≡ 1 (mod 2), we have

Gn+1(λ) = dn
d−1
∑

a=0

(−1)aGn+1

(

λ

d
,
a

d

)

.

Moreover,

Gn+1(λ, x) = dn
d−1
∑

a=0

(−1)aGn+1

(

λ

d
,
a+ x

d

)

.

Now, we consider the degenerate Genocchi polynomials of the second kind
as follows:

(20)
Ĝn+1(λ, x)

n+ 1
=

∫

Zp

(−(y + x)|λ)ndµ−1(y), (n ≥ 0, Ĝ0(λ, x) = 0).

Then, by (20), we see that
∞
∑

n=0

Ĝn(λ, x)
tn

n!
= t

∫

Zp

∞
∑

n=0

λn

(

− y+x

λ

n

)

tndµ−1(y)(21)

= t(1 + λt)−
x
λ

∫

Zp

(1 + λt)−
y

λ dµ−1(y)

=
2t

(1 + λt)
1
λ + 1

(1 + λt)
1−x
λ .

Thus, we see that the generating function for the degenerate Genocchi poly-
nomials of the second is as follows:

(22)

∞
∑

n=0

Ĝn(λ, x)
tn

n!
=

2t

(1 + λt)
1
λ + 1

(1 + λt)
1−x
λ ,

where Ĝ0(λ, x) = 0. When x = 0, Ĝn(λ) = Ĝn(λ, 0) are called the degenerate
Genocchi numbers of the second kind.

From (20) and the fact Ĝ0(λ, x) = 0, we note that

Ĝn+1(λ, x)

n+ 1
=

∫

Zp

(−(y + x)|λ)ndµ−1(y)(23)

= λn

∫

Zp

(

−
y + x

λ

)

n

dµ−1(y)

= λn

n
∑

l=0

S1(n, l)
(−1)l

λl

∫

Zp

(y + x)ldµ−1(y)

=

n
∑

l=0

S1(n, l)λ
n−l(−1)l

Gl+1(x)

l + 1

=

n
∑

l=0

[

n

l

]

λn−l(−1)n
Gl+1(x)

l + 1
,
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where
[

n
l

]

= (−1)n−lS1(n, l) = |S1(n, l)|.
Therefore, by (23), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, we have

(−1)n
Ĝn+1(λ, x)

n+ 1
=

n
∑

l=0

[

n

l

]

λn−lGl+1(x)

l + 1
.

By replacing t with 1
λ
(eλt − 1) in (22), we get

∞
∑

n=0

Ĝn(λ, x)
1

n!

1

λn
(eλt − 1)n(24)

=
2t

et + 1
e(1−x)t e

λt−1

λt

=

( ∞
∑

n=0

Gn(1− x)
tn

n!

)( ∞
∑

m=0

S2(m+ 1, 1)λm

m+ 1

tm

m!

)

=

∞
∑

m=0

( m
∑

n=0

(

m

n

)

Gm−n(1− x)
λn

n+ 1
S2(n+ 1, 1)

)

tm

m!

and
∞
∑

n=0

Ĝn(λ, x)
1

n!

1

λn
(eλt − 1)n =

∞
∑

n=0

Ĝn(λ, x)
1

λn

∞
∑

m=n

S2(m,n)
λmtm

m!
(25)

=

∞
∑

m=0

( m
∑

n=0

Ĝn(λ, x)λ
m−nS2(m,n)

)

tm

m!
.

Therefore, by (24) and (25), we obtain the following theorem.

Theorem 2.7. For m ≥ 0, we have

m
∑

n=0

(

m

n

)

Gm−n(1 − x)
λn

n+ 1
S2(n+ 1, 1) =

m
∑

n=0

Ĝn(λ, x)λ
m−nS2(m,n).

We observe that

(26)

(

x+ y

n

)

=

n
∑

l=0

(

x

l

)(

y

n− l

)

, (n ≥ 0).

Now, we consider

(−1)nGn+1(λ)

(n+ 1)!
=

(−1)n

n!

∫

Zp

(y|λ)ndµ−1(y)(27)

= λn

∫

Zp

(

− y

λ
+ n− 1

n

)

dµ−1(y)

= λn

n
∑

l=0

(

n− 1

n− l

)∫

Zp

(

− y
λ

l

)

dµ−1(y)
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= λn

n
∑

l=0

(

n− 1

l − 1

)

1

λll!

∫

Zp

(−y|λ)ldµ−1(y)

=

n
∑

l=0

(

n− 1

l − 1

)

λn−l Ĝl+1(λ)

(l + 1)!
.

By the same method as (27), we also get

(28)
(−1)n

(n+ 1)!
Ĝn+1(λ) =

n
∑

l=0

(

n− 1

l − 1

)

λn−l Gl+1(λ)

(l + 1)!
.

Therefore, by (27) and (28), we obtain the following theorem.

Theorem 2.8. For n ≥ 0, we have

(−1)n

(n+ 1)!
Gn+1(λ) =

n
∑

l=0

(

n− 1

l − 1

)

λn−l Ĝl+1(λ)

(l + 1)!

and

(−1)n

(n+ 1)!
Ĝn+1(λ) =

n
∑

l=0

(

n− 1

l − 1

)

λn−l Gl+1(λ)

(l + 1)!
.

Remark 2.9. Note that

lim
λ→0

1

2

(

Gn+1(λ, d) + Gn+1(λ)

n+ 1

)

= lim
λ→0

( n
∑

m=0

d−1
∑

l=0

(−1)lλn−mS1(n,m)lm
)

=
d−1
∑

l=0

(−1)lln

=
1

2

(

Gn+1(d) +Gn+1

n+ 1

)

.

It is not difficult to show that

lim
λ→0

Gn(λ, x) = Gn(x) and lim
λ→0

G(r)
n (λ, x) = G(r)

n (x).

From (22), we have

Ĝn(λ, x) = Gn(λ, 1− x)

= (−1)n−1Gn(−λ, x), (n ≥ 0).

Remark 2.10. For r ∈ Z+ and λ, t ∈ Zp with |λt|p < p−
1

p−1 , the degenerate
mixed Genocchi polynomials G∗

n(λ, x) are defined by the generating function to
be

(29)
2 log (1 + λt)

λ{(1 + λt)
1
λ + 1}

(1 + λt)
x
λ =

∞
∑

n=0

G∗
n(λ, x)

tn

n!
.
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When x = 0, G∗
n(λ) = G∗

n(λ, 0) are called the degenerate mixed Genocchi
numbers.

By replacing t with 1
λ
(eλt − 1) in (29), we get

2t

et + 1
ext =

∞
∑

n=0

G∗
n(λ, x)

1

n!λn
(eλt − 1)n(30)

=
∞
∑

n=0

G∗
n(λ, x)

1

λn

∞
∑

m=n

S2(m,n)
λmtm

m!

=

∞
∑

n=0

( ∞
∑

m=n

G∗
n(λ, x)λ

m−nS2(m,n)

)

tm

m!
.

Therefore by (6) and (30), we obtain the following theorem.

Theorem 2.11. For n ≥ 0, we have

Gm(x) =

m
∑

n=0

G∗
n(λ, x)λ

m−nS2(m,n).

By (2) and (29), we get
∫

Zp

log (1 + λt)

λ
(1 + λt)

y+x

λ dµ−1(y) =

(

2 log (1 + λt)

λ{(1 + λt)
1
λ + 1}

)

(1 + λt)
x
λ(31)

=

∞
∑

n=0

G∗
n(λ, x)

tn

n!
.

We adopt the definition of λ-Daehee numbers from [12]. For λ, t ∈ Zp

with |λt|p < p−
1

p−1 , we introduce the modified λ-Daehee numbers Dn,λ by the
generating function

log (1 + λt)

λt
=

∞
∑

n=0

Dn,λ

tn

n!
.

On the other hand

log (1 + λt)

λ

∫

Zp

(1 + λt)
y+x

λ dµ−1(y)(32)

=
log (1 + λt)

λt
t

∫

Zp

(1 + λt)
y+x
λ dµ−1(y)

=

( ∞
∑

m=0

Dm

(λt)m

m!

)( ∞
∑

k=0

Gk(λ, x)
tk

k!

)

=

∞
∑

n=0

( n
∑

k=0

(

n

k

)

λn−kDn−kGk(λ, x)

)

tk

k!
.

Thus, by (31) and (32), we have mixed degenerate Genocchi polynomials
are represented by sums of products of the modified λ-Daehee numbers and
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the degenerate Genocchi polynomials.

G(∗)
n (λ, x) =

n
∑

k=0

(

n

k

)

λn−kDn−kGk(λ, x).
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