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SPECIAL VALUES AND INTEGRAL REPRESENTATIONS

FOR THE HURWITZ-TYPE EULER ZETA FUNCTIONS

Su Hu, Daeyeoul Kim, and Min-Soo Kim

Abstract. The Hurwitz-type Euler zeta function is defined as a defor-

mation of the Hurwitz zeta function:

ζE(s, x) =
∞∑

n=0

(−1)n

(n+ x)s
.

In this paper, by using the method of Fourier expansions, we shall eval-
uate several integrals with integrands involving Hurwitz-type Euler zeta

functions ζE(s, x). Furthermore, the relations between the values of a

class of the Hurwitz-type (or Lerch-type) Euler zeta functions at rational
arguments have also been given.

1. Introduction

The Hurwitz zeta function is defined by

(1.1) ζ(s, x) =

∞∑
n=0

1

(n+ x)s

for s ∈ C and x 6= 0,−1,−2, . . . , and the series converges for Re(s) > 1, so
that ζ(s, x) is an analytic function of s in this region. Setting x = 1 in (1.1), it
reduces to the Riemann zeta function

(1.2) ζ(s) =

∞∑
n=1

1

ns
.

From the well-known identity ζ(s, 12 ) = (2s − 1)ζ(s), we see that the only real

zeroes of ζ(s, x) with x = 1
2 are s = 0,−2,−4, . . . .

Its special values at nonpositive integers are Bernoulli polynomials, that is,

(1.3) ζ(1−m,x) = − 1

m
Bm(x), m ∈ N
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(see [15, p. 162, (1.19)]). Here the Bernoulli polynomials Bm(x) are defined by
their generating function

(1.4)
zexz

ez − 1
=

∞∑
m=0

Bm(x)
zm

m!
, |z| < π.

Bernoulli polynomials have many interesting properties and arise in various
areas of mathematics (see [9,34,36]). Setting x = 0 in (1.4), we get the Bernoulli
numbers

Bm = Bm(0), m ∈ N0 = N ∪ {0}.
From an easy manipulations of the generating function (1.4), we see that
Bm(1) = Bm (m 6= 1) and B1(1) = −B1, where m ∈ N0 (see [13, p. 1480,
(2.3)] and [34, p. 529, (17)]).

The Hurwitz zeta function is a fundamental tool for studying Stark’s conjec-
tures of algebraic number fields, since it represents the partial zeta function of
cyclotomic field (see e.g., [18, p. 993, (4.2)] or [23, p. 4248]). It also plays a role
in the evaluation of fundamental determinants that appears in mathematical
physics (see [14] or [15, p. 161, (1.14) and (1.15)]).

In this paper, we consider the Hurwitz-type Euler zeta function, which is
defined as a deformation of the Hurwitz zeta function

(1.5) ζE(s, x) =

∞∑
n=0

(−1)n

(n+ x)s

for s ∈ C and x 6= 0,−1,−2, . . . . This series converges for Re(s) > 0, and
it can be analytically continued to the complex plane without any pole. It
also represents a partial zeta function of cyclotomic fields in one version of
Stark’s conjectures in algebraic number theory (see [23, p. 4249, (6.13)]), and
its special case, the alternative series,

(1.6) ζE(s) =

∞∑
n=1

(−1)n−1

ns
,

is also a particular case of Witten’s zeta functions in mathematical physics.
(See [31, p. 248, (3.14)]). We here mention that several properties of ζE(s) can
be found in [1,6,10]. For example, in the form on [1, p. 811], the left hand side
is the special values of the Riemann zeta functions at positive integers, and the
right hand side is the special values of Euler zeta functions at positive integers.

Using the Fourier expansion formula

(1.7) ζ(s, x) =
2Γ(1− s)
(2π)1−s

∞∑
n=1

sin
(
2nπx+ πs

2

)
n1−s

,

Espinosa and Moll [15] evaluated several fundamental integrals with integrands
involving Hurwitz zeta functions, where Γ is the Euler gamma-function (see,
e.g., [30] or [36, Chapter 43]), who studied “the Hurwitz transform” meaning
an integral over [0, 1] of a Fourier series multiplied by the Hurwitz zeta function
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ζ(s, x), and obtained numerous results for those which aries from the Hurwitz
formula. Mező [29] determined the Fourier series expansion of the log-Barnes
function, which is the analogue of the classical result of Kummer and Malmsten.
Applying this expansion, he also got some integrals similar to the Espinosa–
Moll log–Gamma integrals with respect to logG in [15,16], where G is Barnes
G function.

Recently, Shpot, Chaudhary and Paris [35] evaluated two integrals over
x ∈ [0, 1] involving products of the function ζ1(s, x) = ζ(s, x) − x−a for
Re(s) > 1. As an application, they also calculated the O(g) weak-coupling
expansion coefficient c1(ε) of the Casimir energy for a film with Dirichlet-
Neumann boundary conditions, first stated by Symanzik [38] under the frame-
work of gφ44−ε theory in quantum physics.

Here we will follow the approach of Espinosa and Moll in [15] to evaluate
several integrals with integrands involving Hurwitz-type Euler zeta functions
ζE(s, x).

Our main tool is the following Fourier expansion of ζE(s, x)

(1.8) ζE(s, x) =
2Γ(1− s)
π1−s

∞∑
n=0

sin
(
(2n+ 1)πx+ πs

2

)
(2n+ 1)1−s

(comparing with (1.7) above). This expression, valid for Re(s) < 1 and 0 <
x ≤ 1, is derived by Williams and Zhang [40, p. 36, (1.7)].

The paper is organized as follows.
In Section 3, we determine the Fourier coefficients of ζE(s, x).
In Section 4, we evaluate integrals with integrands consisting of products of

two Hurwitz-type Euler zeta functions. These will imply some classical relations
for the integral of products of two Euler polynomials (see Propositions 4.8 and
4.10). We also evaluate the moments of the Hurwitz-type Euler zeta functions
and the Euler polynomials (see Propositions 4.9 and 4.10).

In Section 5, we prove several further consequences of integrals with inte-
grands consisting of products of the Hurwitz-type Euler zeta functions, the
exponential function, the power of sine and cosine.

In Section 6, we obtain an Euler-type formula for the Dirichlet beta function
β(2m) and consider the Catalan’s constant G compiled by Adamchik in [2,
Entry 19]. From this, we get a finite closed-form expression for any β(2m) in
terms of the elementary functions (see [24]).

In Section 7, we prove the relations between values of a class of the Hurwitz-
type (or Lerch-type) Euler zeta functions at rational arguments.

2. Preliminaries

The methods employed in this section may also be used to derive several
results of the Hurwitz-type Euler zeta functions, which are analogous of the
known results for Hurwitz zeta functions.
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The series expansion (1.5) for ζE(s, x) has a meaning if Re(s) > 0. In the
following, we recall some basic results of this functions given in [40].

From (1.5), we can easily derive the following basic properties for ζE(s, x)

(2.1) ζE(s, x) + ζE(s, x+ 1) = x−s,

(2.2) ζE(s, kx) = k−s
k−1∑
n=0

(−1)nζE

(
s,
n

k
+ x
)

for k odd,

(2.3) ζE(s, x)− x−s = −
∞∑
n=0

(
−s
n

)
ζE(s+ n)xn

(see [4, (5), (6) and (7)]). For fixed s 6= 1, the series in (2.3) converges absolutely
for |x| < 1. For Re(s) > 1, (1.2) and (1.6) are connected by the following
equation

(2.4) ζE(s) = (1− 21−s)ζ(s).

In [40, §3], Williams and Zhang established the following integral represen-
tation

(2.5) ζE(s, x) =
e−πisΓ(1− s)

2πi

∫
C

e(1−x)zzs−1

ez + 1
dz,

where C is the contour consisting of the real axis from +∞ to ε, the circle
|z| = ε and the real axis from ε to +∞. By (2.5) and the generating function
of the Euler polynomials

(2.6)
2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!
, |z| < π,

we have

ζE(−m,x) =
(−1)mm!

4πi

∫
|z|=ε

∞∑
n=0

En(1− x)

n!

zn

zm+1
dz,

that is,

(2.7) ζE(−m,x) =
(−1)m

2
Em(1− x) =

1

2
Em(x), m ∈ N0

(comparing with (1.3) above). Setting s = −m in (2.4), from (1.3) and (2.7) it
is easy to see that

(2.8) Em(0) = −Em(1) =
2

m+ 1

(
1− 2m+1

)
Bm+1

(see [34, p. 529, (16)]).
The above expansion (2.7) has also been derived in [40, p. 41, (3.8)].
The integers

Em = 2mEm

(
1

2

)
, m ∈ N0,
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are called m-th Euler numbers. For example, E0 = 1, E2 = −1, E4 = 5, and
E6 = −61. Notice that the Euler numbers with odd subscripts vanish, that is,
E2m+1 = 0 for all m ∈ N0. The Euler polynomials can be expressed in terms
of the Euler numbers in the following way:

(2.9) Em(x) =

m∑
i=0

(
m

i

)
Ei
2i

(
x− 1

2

)m−i
(see [34, p. 531, (29)]).

Some properties of Euler polynomials can be easily derived from their gen-
erating functions, for example, from (2.6), we have

(2.10) Em(x+ 1) + Em(x) = 2xm, m ∈ N0,

which have numerous applications (see [13, p. 1489, (5.4)] and [34, p. 530, (23)
and (24)]).

For further properties of the Euler polynomials and numbers including their
applications, we refer to [1, 7, 17, 22, 34]. It may be interesting to point out
that there is also a connection between the generalized Euler numbers and the
ideal class group of the pn+1-th cyclotomic field when p is a prime number. For
details, we refer to a recent paper [19], especially [19, Proposition 3.4].

The result

(2.11)

∫ 1

0

ζE(s, x)dx =
4Γ(1− s)
π2−s cos

(πs
2

)
λ(2− s),

valid for Re(s) < 1, follows directly from the representation (1.8). Here λ(s) is
the Dirichlet lambda function

(2.12) λ(s) =

∞∑
n=0

1

(2n+ 1)s
= (1− 2−s)ζ(s), Re(s) > 1,

where ζ(s) is the Riemann zeta function (see [1, p. 807, 23.2.20] and [36, p.
32, Eq. 3:6:2]). If we put s = −2m with m ∈ N0 in (2.11) and use (2.7), then
we obtain

(2.13)

∫ 1

0

E2m(x)dx =
8(2m)!(−1)m

π2m+2
λ(2m+ 2).

If we replace m by 2m and let n = 0 in (4.15) below, then the left hand side of
(2.13) becomes

(2.14)

∫ 1

0

E2m(x)dx = − 2(2m)!

(2m+ 1)!
E2m+1(0),

where m ∈ N0. From (2.13) and (2.14), the values of the Dirichlet lambda
function at even positive integers is given as

(2.15) λ(2m) = (−1)m
π2m

4(2m− 1)!
E2m−1(0),
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where m ∈ N. In particular, if we put m = 1,m = 2 and m = 3 in (2.15),

then we have the first few values λ(2) = π2

8 , λ(4) = π4

96 and λ(6) = π6

960 (see
[1, p. 808]).

3. The Fourier expansion of ζE(s, x)

In this section, by using the Fourier expansion (1.8) for ζE(s, x), we shall
evaluate definite integrals of the Hurwitz-type transform

H(f, s) =

∫ 1

0

f(x)ζE(s, x)dx.

The expansion is valid for Re(s) < 1. For the basics we refer the reader to
definite integrals of the Hurwitz transform, e.g., [15] and [25].

The following is the Fourier coefficients of ζE(s, x), as a direct consequence
of (1.8) (see e.g., [15, p. 164, Proposition 2.1]).

Proposition 3.1. The Fourier coefficients of ζE(s, x) are given by

(3.1)

∫ 1

0

sin((2k + 1)πx)ζE(s, x)dx =
πs(2k + 1)s−1

2Γ(s)
csc
(πs

2

)
and

(3.2)

∫ 1

0

cos((2k + 1)πx)ζE(s, x)dx =
πs(2k + 1)s−1

2Γ(s)
sec
(πs

2

)
.

Remark 3.2. Recently, Luo [27], Bayad [8], Navas, Francisco and Varona [32]
investigated Fourier expansions of the Apostol-Bernoulli polynomials, which
are special values of Hurwitz-Lerch zeta function at non-positive integers [21,
Lemma 2.1].

Proof of Proposition 3.1. The proof follows from the similar argument with [15,
Proposition 2.1], by applying the orthogonality of the trigonometric functions
and the expansion (1.8) above. �

In the following proposition, we shall compute the Hurwitz-type transform
of powers of sine and cosine, including some related integrals (see [15, §11]).

Proposition 3.3. Let s ∈ R−0 = (−∞, 0] and n ∈ N. Then we have
(3.3)∫ 1

0

sin2n−1(πx)ζE(s, x)dx =
Γ(1− s)
π1−s22n−2

cos
(πs

2

) n−1∑
k=0

(−1)k

(2k + 1)1−s

(
2n− 1

n− k − 1

)
and
(3.4)∫ 1

0

cos2n−1(πx)ζE(s, x)dx =
Γ(1− s)
π1−s22n−2

sin
(πs

2

) n−1∑
k=0

1

(2k + 1)1−s

(
2n− 1

n− k − 1

)
.
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Proof. The proofs follow from the similar arguments with [15, Examples 11.1
and 11.2], which is based on (3.1) and (3.2), and the integral representation

(3.5) sin2n−1(πx) =
1

22n−2

n−1∑
k=0

(−1)k
(

2n− 1

n− k − 1

)
sin((2k + 1)πx)

by Kogan in [17, p. 31, 1.320]. �

As in Espinosa and Moll [15], we may evaluate the integrals using the Fourier
expansions of functions. The following result about this idea will become the
basic tool for the proofs of the results in this paper.

Theorem 3.4. Let f(w, x) be defined for x ∈ [0, 1] and a parameter w. Let

(3.6) f(w, x) =

∞∑
n=0

(
an(w) cos((2n+ 1)πx) + bn(w) sin((2n+ 1)πx)

)
be its Fourier expansion, so that

(3.7) an(w) = 2

∫ 1

0

f(w, x) cos((2n+ 1)πx)dx,

(3.8) bn(w) = 2

∫ 1

0

f(w, x) sin((2n+ 1)πx)dx.

Then, for s ∈ R−0 , we have
(3.9)∫ 1

0

f(w, x)ζE(s, x)dx =
Γ(1− s)
π1−s

(
sin
(πs

2

)
C(s, w) + cos

(πs
2

)
S(s, w)

)
and
(3.10)∫ 1

0

f(w, x)ζE(s, 1− x)dx =
Γ(1− s)
π1−s

(
cos
(πs

2

)
S(s, w)− sin

(πs
2

)
C(s, w)

)
,

where

C(s, w) =
∞∑
n=0

an(w)

(2n+ 1)1−s
and S(s, w) =

∞∑
n=0

bn(w)

(2n+ 1)1−s
.

Proof. The proof follows from the similar argument with [15, Theorem 2.1], by
multiplying the formula (3.6) by ζE(s, x) and integrating both sides from 0 to
1, then applying (3.1) and (3.2). �

4. Integral representations of Hurwitz-type Euler zeta functions

In this section, we shall evaluate integrals with integrands consisting of prod-
ucts of Hurwitz-type Euler zeta functions. These will imply some integral rep-
resentations for the function and classical relations for the integral of products
of two Euler polynomials.
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Theorem 4.1. Let s, s′ ∈ R−0 . Then we have
(4.1)∫ 1

0

ζE(s′, x)ζE(s, x)dx =
2Γ(1− s)Γ(1− s′)

π2−s−s′ λ(2− s− s′) cos

(
π(s− s′)

2

)
.

Similarly, we have
(4.2)∫ 1

0

ζE(s′, x)ζE(s, 1− x)dx =
2Γ(1− s)Γ(1− s′)

π2−s−s′ λ(2− s− s′) cos

(
π(s+ s′)

2

)
.

Proof. In view of (3.4), (3.7) and (3.8), the expansion (1.8) shows that the
coefficients of ζE(s′, x) are given by

(4.3)

an(s′) =
2Γ(1− s′) sin

(
πs′

2

)
π1−s′

1

(2n+ 1)1−s′
,

bn(s′) =
2Γ(1− s′) cos

(
πs′

2

)
π1−s′

1

(2n+ 1)1−s′
.

From (2.12), (3.9) and (4.3), we obtain
(4.4)∫ 1

0

ζE(s′, x)ζE(s, x)dx =
2Γ(1− s)Γ(1− s′)

π2−s−s′

(
sin
(πs

2

)
sin

(
πs′

2

)
+ cos

(πs
2

)
cos

(
πs′

2

)) ∞∑
n=0

1

(2n+ 1)2−s−s′

=
2Γ(1− s)Γ(1− s′)

π2−s−s′ cos

(
π(s− s′)

2

)
λ(2− s− s′),

which gives (4.1). The proof of (4.2) is similar. �

Corollary 4.2. Let s, s′ ∈ R−0 and

δ2(s) =
1− 2s+1

1− 2s
, s 6= 0.

Then we have

(4.5)

∫ 1

0

ζE(s′, x)ζE(s, x)dx = δ2(1− s− s′)
cos
(
π(s−s′)

2

)
cos
(
π(s+s′)

2

)B(1− s, 1− s′)

× λ(s+ s′ − 1).

Similarly, we have

(4.6)

∫ 1

0

ζE(s′, x)ζE(s, 1− x)dx = δ2(1− s− s′)B(1− s, 1− s′)

× λ(s+ s′ − 1).
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Here B(s, s′) is the beta function,

(4.7) B(s, s′) =
Γ(s)Γ(s′)

Γ(s+ s′)
,

defined for s, s′ ∈ C with Re(s),Re(s′) > 1, see [40, (1.36)].

Proof. The functional equation of Riemann’s zeta function is well-known, and
it is given by (see [15, (1.35)])

(4.8) ζ(1− s) = 2 cos
(πs

2

) Γ(s)

(2π)s
ζ(s).

From (2.12) and (4.8), we have

(4.9) λ(2− s− s′) = − δ2(1− s− s′)π2−s−s′

2Γ(2− s− s′) cos
(
π(2−s−s′)

2

)λ(s+ s′ − 1).

Finally, using (4.1) and (4.9), we obtain (4.5). The proof of (4.6) is similar. �

Corollary 4.3. Let s ∈ R−0 . Then we have

(4.10)

∫ 1

0

ζ2E(s, x)dx = 2Γ2(1− s)π2s−2λ(2− 2s)

and

(4.11)

∫ 1

0

ζE(s, x)ζE(s, 1− x)dx = 2Γ2(1− s)π2s−2λ(2− 2s) cos(πs).

Proof. Put s = s′ in (4.1) and (4.2), we get our results. �

Corollary 4.4. Let m ∈ N. Then we have

(4.12)

∫ 1

0

ζ2E

(
−m+

1

2
, x

)
dx = 2

(
(2m)!

22mm!

)2
λ(2m+ 1)

π2m
.

Proof. Setting s = −m+ 1
2 in (4.10), then by

Γ

(
m+

1

2

)
=

√
π(2m)!

22mm!
(see [15, p. 167]),

we get our result. �

Corollary 4.5. Let s ∈ R−0 and m ∈ N. Then we have

(4.13)

∫ 1

0

Em−1(x)ζE(s, x)dx = (−1)m+12δ2(m− s) (m− 1)!λ(s−m)

(1− s)m
,

where (s)k = s(s+ 1) · · · (s+ k − 1) is the Pochhammer symbol.

Remark 4.6. The case m = 1 in (4.13) implies (2.11) from (2.12) and (4.8).
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Proof of Corollary 4.5. Let s′ = 1−m in (4.5), we have∫ 1

0

ζE(1−m,x)ζE(s, x)dx = δ2(m− s)
cos
(
π(s−1+m)

2

)
cos
(
π(s+1−m)

2

)B(1− s,m)

× λ(s−m).

The result then follows from (2.7), since

cos
(
π(s−1+m)

2

)
cos
(
π(s+1−m)

2

) = (−1)m+1

and B(1− s,m) = (m− 1)!/(1− s)m. �

Lemma 4.7. For m ∈ N, we have

(4.14) λ(1−m) = (−1)m+1 1

2δ2(m− 1)
Em−1(0).

Proof. This follows from (1.3) with x = 1, (2.8) and (2.12). �

The following formula on the integral of two Euler polynomials has a long
history, it has already appeared in a book by Nörlund [33, p. 36]. See e.g.
[34, p. 530, (25)] and [37, p. 64, (52)].

Corollary 4.8. Let m,n ∈ N0. Then we have

(4.15)

∫ 1

0

Em(x)En(x)dx = 2(−1)n+1 m!n!

(m+ n+ 1)!
Em+n+1(0).

Proof of Corollary 4.8. Set s = 1−n, where n ∈ N in (4.13), then by (2.7) and
(4.14), we obtain∫ 1

0

Em−1(x)En−1(x)dx = 4(−1)m+1δ2(m+ n− 1)
(m− 1)!λ(1− (m+ n))

(n)m

= 2(−1)n
(m− 1)!

(n)m
Em+n−1(0)

= 2(−1)n
(m− 1)!(n− 1)!

(m+ n− 1)!
Em+n−1(0),

where m,n ∈ N. This completes our proof. �

Corollary 4.9. For n ∈ N0, the moments of the Hurwitz-type Euler zeta func-
tion are given by

(4.16)

∫ 1

0

xnζE(s, x)dx =

n∑
j=0

(
n

j

)
(−1)jδ2(j − s+ 1)

j!λ(s− j − 1)

(1− s)j+1

+ (−1)nδ2(n− s+ 1)
n!λ(s− n− 1)

(1− s)n+1
.
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Proof. The proof of (4.16) is obtained by using the expansion of xn in terms
of Euler polynomials (2.10) and the evaluation (4.13). �

Corollary 4.10. Let m ∈ N and n ∈ N0. Then we have

(4.17)

∫ 1

0

xnEm−1(x)dx =
(−1)m

m

 n∑
j=0

(
n
j

)(
m+j
j

)Em+j(0) +
Em+n(0)(
m+n
n

)
 .

Proof. By (4.14), we have

(4.18) λ(1− (j +m+ 1)) = (−1)j+m
1

2δ2(j +m)
Ej+m(0).

Letting s = 1−m in (4.16), then using (2.7) and (4.18), we easily deduce that∫ 1

0

xnEm−1(x)dx = (−1)m

 n∑
j=0

(
n

j

)
j!

(m)j+1
Em+j(0) +

n!

(m)n+1
Em+n(0)


and this implies our result. �

Remark 4.11. Corollary 4.10 gives some identities of Em(0) for each value of
m ∈ N. For instance, when m = 1 and 2, we have

n∑
j=0

(
n

j

)
Ej+1(0)

j + 1
= − 1

n+ 1
(En+1(0) + 1),

n∑
j=0

(
n

j

)
Ej+2(0)

(j + 1)(j + 2)
= − 1

2(n+ 1)(n+ 2)
(2En+2(0)− n),

where n ∈ N0.

5. The exponential function

In this section, we shall evaluate the Hurwitz-type transform of the expo-
nential function (see [15, §4]). As [15, §4], the result is expressed in terms of
the transcendental function

(5.1) F (x, s) =

∞∑
n=0

λ(n+ 2− s)xn for |x| < 1,

where λ(s) denotes the Dirichlet lambda function (define 00 = 1 if x = 0).

Theorem 5.1. Let s ∈ R−0 and |t| < 1. Then we have

(5.2)

∫ 1

0

e2πtxζE(s, x)dx =
2(e2πt + 1)Γ(1− s)

π2−s Re
(
eπis/2F (2it, s)

)
,

where F (x, s) is given in (5.1).

Remark 5.2. Setting t = 0 in (5.2), we get (2.11).
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Proof of Theorem 5.1. The generating function for the Euler polynomials (2.6)
gives

ext =
et + 1

2

∞∑
n=0

En(x)
tn

n!
,

so that

(5.3)

∫ 1

0

extζE(s, x)dx =
et + 1

2

∞∑
n=0

tn

n!

∫ 1

0

En(x)ζE(s, x)dx.

By (4.7), we have

(5.4)
n!

(1− s)n+1
= B(1− s, n+ 1) =

Γ(1− s)Γ(n+ 1)

Γ(n− s+ 2)
.

Therefore, from (4.13) and (5.4), (5.3) gives

(5.5)

∫ 1

0

extζE(s, x)dx = (et + 1)

∞∑
n=0

tn

n!
(−1)nδ2(n− s+ 1)B(1− s, n+ 1)

× λ(s− n− 1).

By (4.9), we have

(5.6) λ(s−n− 1) = − 2

δ2(n− s+ 1)

Γ(n− s+ 2) cos
(
π(n−s+2)

2

)
πn−s+2

λ(n− s+ 2),

thus in viewing of (5.4) and (5.6), we may also write (5.5) in the form∫ 1

0

extζE(s, x)dx = (et + 1)Γ(1− s)
∞∑
n=0

tn

n!
(−1)nδ2(n− s+ 1)

Γ(n+ 1)

Γ(n− s+ 2)

× λ(s− n− 1)

=
2(et + 1)Γ(1− s)

π2−s

∞∑
n=0

(
t

π

)n
(−1)n cos

(
π(n− s)

2

)
(5.7)

× λ(n− s+ 2).

Finally, by replacing t with 2πt and using the identity

cos
π(n− s)

2
= Re(eiπ(s−n)/2) = Re((−i)neiπs/2),

we get ∫ 1

0

e2πtxζE(s, x)dx

=
2(e2πt + 1)Γ(1− s)

π2−s

∞∑
n=0

(−2t)
n
λ(n− s+ 2) cos

(
π(n− s)

2

)

=
2(e2πt + 1)Γ(1− s)

π2−s

∞∑
n=0

(−2t)
n
λ(n− s+ 2) Re((−i)neiπs/2)
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=
2(e2πt + 1)Γ(1− s)

π2−s Re

(
eπis/2

∞∑
n=0

λ(n− s+ 2)(2it)n

)

=
2(e2πt + 1)Γ(1− s)

π2−s Re
(
eπis/2F (2it, s)

)
.

This completes our proof. �

Corollary 5.3. Let m ∈ N0 and |t| < 1, t 6= 0. Then we have
(5.8)∫ 1

0

e2πtxEm(x)dx =
(−1)m4(e2πt + 1)m!

(2πt)m+2

×

πt
2

tanh(πt)−
bm−1

2 c∑
r=0

(−1)rλ(2r + 2)(2t)2r+2

 ,

where bxc is the floor (greatest integer) function.

Proof. Suppose that k ∈ N0. Let s = −2k in (5.2). From (5.1), we have

(5.9)

Re
(
eπis/2F (2it, s)

)
= Re

(
eπi(−2k)/2F (2it,−2k)

)
= (−1)kRe

( ∞∑
r=0

λ(r + 2 + 2k)(2it)r

)

= (−1)k
∞∑
r=0

λ(2r + 2 + 2k)(−1)r(2t)2r.

From [36, p. 37, Eq. 3:14:7], we obtain

tanh
(πx

2

)
= − 4

πx

∞∑
r=1

(−1)rλ(2r)x2r,

so

(5.10)

πx

4
tanh

(πx
2

)
=

∞∑
r=0

(−1)rλ(2r + 2)x2r+2

=

∞∑
r=k

(−1)rλ(2r + 2)x2r+2 +

k−1∑
r=0

(−1)rλ(2r + 2)x2r+2.

Replacing x by 2t in (5.10), we have
(5.11)

∞∑
r=k

(−1)rλ(2r + 2)(2t)2r+2 =
πt

2
tanh(πt)−

k−1∑
r=0

(−1)rλ(2r + 2)(2t)2r+2.
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On the other hand, by (5.9), we have

(5.12)

(2t)−2k−2
∞∑
r=k

(−1)rλ(2r + 2)(2t)2r+2

= (−1)k
∞∑
r=0

λ(2r + 2 + 2k)(−1)r(2t)2r

= Re
(
eπi(−2k)/2F (2it,−2k)

)
for |t| < 1, t 6= 0. By (5.11) and (5.12), we get

(5.13)

Re
(
eπi(−2k)/2F (2it,−2k)

)
=

(−1)2k

(2t)2k+2

(
πt

2
tanh(πt)−

k−1∑
r=0

(−1)rλ(2r + 2)(2t)2r+2

)
.

Let s = −2k − 1 in (5.2), similar with the above, we obtain

(5.14)

Re
(
eπis/2F (2it, s)

)
= Re

(
eπi(−2k−1)/2F (2it,−2k − 1)

)
=

(−1)2k+1

(2t)2k+3

(
πt

2
tanh(πt)−

k∑
r=0

(−1)rλ(2r + 2)(2t)2r+2

)
.

The proof now follows directly from (2.7), (5.2), (5.13) and (5.14). �

6. An expression for Catalan’s constant and an Euler-type formula
for the Dirichlet beta function

Following Berndt [9, p. 200, Entry 17(v)], Espinosa and Moll [15, p. 177,
(8.1)], for x > 0, we define

(6.1) GE(s, x) = ζE(s, x)− ζE(s, 1− x).

From (1.8), the Fourier expansion for ζE(s, x), we have the following Fourier
expansion of GE(s, x)

(6.2) GE(s, x) =
4Γ(1− s)
π1−s sin

(πs
2

) ∞∑
n=0

cos((2n+ 1)πx)

(2n+ 1)1−s
.

We introduce the anti-symmetrized Hurwitz transform for GE(s, x) as fol-
lows (also see [15])

(6.3) HA(f) =
1

2

∫ 1

0

f(w, x)GE(s, x)dx,
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where f(w, x) is given in (3.6). For a function f(w, x) with Fourier expansion
as in (3.6), we have

(6.4)
1

2

∫ 1

0

f(w, x)GE(s, x)dx =
Γ(1− s)
π1−s sin

(πs
2

) ∞∑
n=0

an(w)

(2n+ 1)1−s
.

From [17, p. 408, 3.612], we get

(6.5)

∫ 1

0

cos((2n+ 1)πx)

cos(πx)
dx = (−1)n.

By (6.2) and (6.5), we see that

(6.6)
1

2

∫ 1

0

GE(s, x)

cos(πx)
dx =

2Γ(1− s)
π1−s sin

(πs
2

)
β(1− s),

where

(6.7) β(s) =

∞∑
n=0

(−1)n

(2n+ 1)s

is the Dirichlet beta function (see [1, p. 807, 23.2.21]). It is necessary to remark
that by the procedure of analytic continuation, the function β(s) can extend to
all points in the complex plane, without any singularities. In particular, when
s = −1, (6.6) becomes

(6.8)
1

2

∫ 1

0

GE(−1, x)

cos(πx)
dx = − 2

π2
β(2).

Espinosa and Moll [15, p. 178, (8.8)] established the integral representation of
the Catalan constant G (see [2]) as

(6.9)

∫ 1

0

1
2 − x

cos(πx)
dx =

4G

π2
.

Using (2.7), (6.1) with s = −1 and (6.9), the left hand side of (6.8) becomes

(6.10)

1

2

∫ 1

0

GE(−1, x)

cos(πx)
dx =

1

2

∫ 1

0

x− 1
2

cos(πx)
dx

= −2G

π2
.

From (6.8) and (6.10), we then have

(6.11) G = β(2) = −π
2

4

∫ 1

0

GE(−1, x)

cos(πx)
dx.

This form of Catalan’s constant is Entry 14 and 19 in the list of expressions
for G compiled by Adamchik in [2].

From (6.6), we have the following lemma, which were given in [1, p. 807,
23.2.23], [36, p. 36, Eq. 3:13:4] and [40, (4.13)].



200 S. HU, D. KIM, AND M.-S. KIM

Lemma 6.1. Let m ∈ N. Then we have

(6.12)

∫ 1

0

sec(πx)E2m−1(x)dx = (−1)m
4(2m− 1)!

π2m
β(2m).

Proof. For m ∈ N, letting s = −(2m− 1) in (6.6), we have

(6.13)
1

2

∫ 1

0

GE(−(2m− 1), x)

cos(πx)
dx =

2(2m− 1)!

π2m
(−1)mβ(2m).

It is easy to see that by (2.6),

Em(1− x) = (−1)mEm(x), m ∈ N0.

Hence, by (2.7) and (6.1), the left hand side of (6.13) becomes

(6.14)

1

2

∫ 1

0

GE(−(2m− 1), x)

cos(πx)
dx =

1

4

∫ 1

0

E2m−1(x)− E2m−1(1− x)

cos(πx)
dx

=
1

2

∫ 1

0

E2m−1(x)

cos(πx)
dx

for m ∈ N. The proof now follows directly from (6.13) and (6.14). �

We now evaluate β(2m) using (4.17). This new formula can be regarded as
an analogue of Theorem 1 of [24].

Theorem 6.2 (Euler-type formula for β(2m)). Let m ∈ N. Then we have
(6.15)

β(2m) =

∞∑
n=1

(−1)n+mπ2m+2nE2n

4

 n∑
j=1

E2m+2j−1(0)

(2n− 2j + 1)!(2m+ 2j − 1)!

 .

Proof. From the Taylor expansion for sec(πx), namely

sec(πx) =

∞∑
n=0

(−1)nE2n

(2n)!
(πx)2n,

it is clear that∫ 1

0

sec(πx)E2m−1(x)dx =

∞∑
n=0

(−1)nπ2nE2n

(2n)!

∫ 1

0

x2nE2m−1(x)dx,

where m ∈ N. Note that E2m(0) = 0,m ∈ N. Therefore, by (4.17) and (6.12),
we get our result. �

For instance, if we set m = 1 in (6.15), then we obtain:

Corollary 6.3.

β(2) = G =

∞∑
n=1

(−1)n+1nπ2n+2E2n

4(2n+ 2)!
.
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Remark 6.4. For m ∈ N0 we write s = −2m in (1.8) and let x = 1/2. We
obtain easily

(6.16) ζE

(
−2m,

1

2

)
=

(−1)m2(2m)!

π2m+1

∞∑
n=0

(−1)n

(2n+ 1)2m+1
,

so (6.16) becomes, after using (2.7),

(6.17)
1

2
E2m

(
1

2

)
=

(−1)m2(2m)!

π2m+1

∞∑
n=0

(−1)n

(2n+ 1)2m+1
.

By using E2m = 22mE2m (1/2) ,m ∈ N0, we are easy to show that, for the
Dirichlet beta function (6.7),

(6.18) β(2m+ 1) = (−1)m
E2m

22m+2(2m)!
π2m+1,

where Em are the Euler number, that is, the integers obtained as the coefficients
of zm/m! in the Taylor expansion of 1/ cosh z, |z| < π/2 (see [24, (3)] and
[40, (4.10)]). The formula (6.12) for β(2m) gives us

(6.19) β(2m) = (−1)m
π2m

4(2m− 1)!

∫ 1

0

sec(πx)E2m−1(x)dx,

which is also Equation 23.2.23 of [1], Equation 3:13:4 of [36] and (4.13) of [40].
(6.19) may give some hint for the question “why it is so difficult to find closed-
form expressions for even beta values?” However, Lima [24] has derived the
exact closed-form expression for a certain class of zeta series related to β(2m)
and a finite number of odd zeta values.

7. Integral representations of Lerch-type Euler zeta functions and
special values for Lerch-type Euler zeta functions at rational

arguments

The counterpart of the Hurwitz-type Euler zeta function, the Lerch-type
Euler zeta function `E,s(x) of the complex exponential argument is defined by

(7.1) `E,s(x) =

∞∑
n=0

e(2n+1)πix

(2n+ 1)s

for Re(s) > 1 and x ∈ R (see [12, p. 1530, (7)]). The Hurwitz-type Euler zeta
function and the Lerch-type Euler zeta function are related by the functional
equation

(7.2) ζE(1− s, x) =
Γ(s)

πs

(
e−

πis
2 `E,s(x)− eπis2 `E,s(1− x)

)
,

the inverse is

(7.3) `E,s(x) =
Γ(1− s)
2π1−s

(
e
πi(1−s)

2 ζE(1− s, x)− e−
πi(1−s)

2 ζE(1− s, 1− x)
)
.
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The limiting case x → 1− of (7.2) leads to the asymmetric form of the
functional equation for ζE(s) and λ(s)

(7.4) ζE(1− s) = −2Γ(s)

πs
cos
(πs

2

)
λ(s),

where λ(s) is the Dirichlet lambda function (2.12). Similarly, in (7.3), with
x = 1

2 , we have

(7.5) `E,s

(
1

2

)
=
iΓ(1− s)
π1−s sin

(
π(1− s)

2

)
ζE

(
1− s, 1

2

)
.

Theorem 7.1. Let s, s′ ∈ R−0 . Then we have

(7.6)

∫ 1

0

ζE(s′, x)`E,s(x)dx = πs
′−1Γ(1− s′)eπi2 (1−s′)λ(1 + s− s′).

Proof. We have the functional equation for the Hurwitz-type Euler zeta func-
tion (see (7.3)):

`E,s(x) =
iΓ(1− s)

2π1−s

(
e−

πis
2 ζE(1− s, x) + e

πis
2 ζE(1− s, 1− x)

)
.

From which, we obtain

(7.7)

∫ 1

0

ζE(s′, x)`E,s(x)dx =
iΓ(1− s)

2π1−s

[
e−

πis
2

∫ 1

0

ζE(s′, x)ζE(1− s, x)dx

+ e
πis
2

∫ 1

0

ζE(s′, x)ζE(1− s, 1− x)

]
.

Substituting (4.1) and (4.2) in the integral (7.7), we deduce that

(7.8)

∫ 1

0

ζE(s′, x)`E,s(x)dx =
iΓ(1− s)Γ(s)Γ(1− s′)

π2−s′ λ(1 + s− s′)

×
[
e−

πis
2 cos

(
π(1− s− s′)

2

)
+ e

πis
2 cos

(
π(1− s+ s′)

2

)]
.

Now the factor on the right hand side of (7.8) is[
e−

πis
2 cos

(
π(1− s− s′)

2

)
+ e

πis
2 cos

(
π(1− s+ s′)

2

)]
= e−

πis′
2 sin(πs).

Therefore, from the reflection formula

Γ(s)Γ(1− s) =
π

sin(πs)
,

we have ∫ 1

0

ζE(s′, x)`E,s(x)dx =
iΓ(1− s′)
π1−s′ e−

πis′
2 λ(1 + s− s′).

This completes the proof. �
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Let φ(x, a, s) be the power Dirichlet series defined for Re(s) > 1, x real, a 6=
negative integer or zero, by the series

(7.9) φ(x, a, s) =

∞∑
n=0

e2nπix

(n+ a)s

(see [3, p. 161, (1.1)]). It is known that φ(x, a, s) can be extended to whole
s-plane by means of the contour integral. The value of φ(x, a, s) when s is 0
or a negative integer can be calculated by applying Cauchy’s residue theorem.
For m ∈ N0, the Apostol’s formula (see [3, p. 164)]) gives

(7.10) φ(x, a,−m) = −Bm+1(a, e2πix)

m+ 1
,

where Bm(a, α) are the Apostol-Bernoulli polynomials defined by

(7.11)
zeaz

αez − 1
=

∞∑
m=0

Bm(a, α)
zm

m!
.

We refer to [3,8,20,27,32] for an account of the properties of Apostol-Bernoulli
polynomials Bm(a, α). For a later purpose, we observe that, by (7.1) and (7.9),
the following equality is established,

(7.12) `E,s(x) = 2−seπixφ

(
x,

1

2
, s

)
,

so that by (7.10) and (7.12),

(7.13) `E,−m(x) = −2meπix
Bm+1

(
1
2 , e

2πix
)

m+ 1
,

where m ∈ N0.
We observe that the function ζE(s, x) in (1.5) is a linear combination of the

Hurwitz zeta functions ζ(s, x) in (1.1) when x is a rational number.

Theorem 7.2. Let p, q be integers, q ∈ N and 1 ≤ p ≤ q. Then for all s ∈ C,
we have

(7.14) ζE

(
1− s, p

q

)
=

2Γ(s)

(2qπ)s

q−1∑
r=0

cos

(
πs

2
− (2r + 1)πp

q

)
ζ

(
s,

2r + 1

2q

)
.

Remark 7.3. This is an analogue of [5, p. 261, Theorem 12.8], where the Hurwitz
zeta function ζ(s, x) instead of ζE(s, x).

Proof of Theorem 7.2. Following an idea in [37, p. 337, (8)], we have

(7.15)

∞∑
n=1

f(n) =

q∑
r=1

∞∑
k=0

f(kq + r)
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if the involved series is absolutely convergent. Applying (7.15) to the series
(7.1), we have (see [12, p. 1530, (8b)] and [11, p. 1487, (3.4)])

(7.16) `E,s

(
p

q

)
=

1

(2q)s

q∑
r=1

e(2r−1)πi
p
q ζ

(
s,

2r − 1

2q

)
.

Therefore, if we take x = p
q in the formula (7.2) to (7.16), in considerations of

`E,s(1− x) = −`E,s(x), we have the following equality

ζE

(
1− s, p

q

)
=

Γ(s)

πs

(
e−

πis
2 `E,s

(
p

q

)
+ e

πis
2 `E,s

(
−p
q

))
=

2Γ(s)

(2qπ)s

q∑
r=1

cos

(
πs

2
− (2r − 1)πp

q

)
ζ

(
s,

2r − 1

2q

)
,

which holds true, by the principle of analytic continuation, for all admissible
values of s ∈ C. �

Corollary 7.4 ([12, p. 1529, Theorem B]). Let p, q be integers, q ∈ N and
1 ≤ p ≤ q. For m ∈ N, the Euler polynomials Em(x) at rational arguments are
given by
(7.17)

Em

(
p

q

)
=

4m!

(2qπ)m+1

q∑
r=1

sin

(
(2r − 1)πp

q
− mπ

2

)
ζ

(
m+ 1,

2r − 1

2q

)
.

Proof. By setting s = m+ 1 (m ∈ N0) in (7.14) and using (2.7), we obtain the
formula in (7.17), which completes the proof. �

Corollary 7.5. Let p, q be integers, q ∈ N and 1 ≤ p < q. Then we have

(7.18) Bm+1

(
1

2
, e2πi

p
q

)
= qm

q∑
r=1

e2(r−1)πi
p
qBm+1

(
2r − 1

2q

)
, m ∈ N0.

Proof. Letting m ∈ N0, then replacing s by −m in (7.16), using (1.3) and
(7.13), we get our result. �

Remark 7.6. This identity is also a special case of the multiplication theorem
for Apostol-Bernoulli polynomials (see eg. [28, Eq. (17)]).

Since `E,s(x) is a relative of the Hurwitz-type Euler zeta function ζE(s, x)
defined (1.5) (see (7.2) and (7.3) above), it is natural to expect a relation
involving ζ(s, x):

Lemma 7.7 (Generalized Eisenstein formula). Let p, q be integers, q ∈ N and
1 ≤ p < q. Then we have

(7.19) ζ

(
s,

2p− 1

2q

)
=

1

q

q∑
r=1

(2q)se−(2p−1)πi
r
q `E,s

(
r

q

)
.
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Remark 7.8. The equation (7.19) was announced without a proof in [11, p.
1487, (3.3)].

Proof of Lemma 7.7. The formula (1.1) could be written in the following form

(7.20)

ζ

(
s,

2p+ 1

2q

)
= (2q)s

∞∑
k=0

1

(2(qk + p) + 1)s

= (2q)s
∞∑
n=0

n≡p (mod q)

1

(2n+ 1)s
.

Note that in fact (see [5, p. 158, Theorem 8.1])

1

q

q∑
r=1

e2πi(n−p)
r
q =

{
1 if n ≡ p (mod q)

0 otherwise,

and hence

(7.21)

ζ

(
s,

2p+ 1

2q

)
= (2q)s

∞∑
n=0

1
q

∑q
r=1 e

2πi(n−p) rq

(2n+ 1)s

=
1

q

q∑
r=1

(2q)s
∞∑
n=0

e(2n+1)πi rq

(2n+ 1)s
e−(2p+1)πi rq

for 1 ≤ p < q, the conclusion is immediate. �

Corollary 7.9. Let p, q be integers, q ∈ N and 1 ≤ p < q. Then we have

(7.22) Bm+1

(
2p− 1

2q

)
=

1

qm+1

q∑
r=1

e−2(p−1)πi
r
qBm+1

(
1

2
, e2πi

r
q

)
, m ∈ N0.

Here, the term Bm+1

(
1
2 , 1
)

is understood as Bm+1

(
1
2

)
(the value of the Bernou-

lli polynomials Bm+1(x) at x = 1
2 ).

Proof. Let m ∈ N0, and replace s by −m in (7.19). Then, using (1.3) and
(7.13), we get our result. �

Theorem 7.10. Let p, q be integers, q ∈ N and 1 ≤ p ≤ q. Then we have the
identities

(7.23)

1

q

q∑
r=1

(2q)se−(2p+1)πi rq `E,s

(
r

q

)
=

Γ(1− s)
π1−s

{
e−

πi(1−s)
2 `E,1−s(x)− e

πi(1−s)
2 `E,1−s(1− x)

}
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and

(7.24)

1

(2q)s

q∑
r=1

e(2r−1)πi
p
q ζ

(
s,

2r − 1

2q

)
=

Γ(1− s)
2π1−s

{
e
πi(1−s)

2 ζE

(
1− s, p

q

)
− e−

πi(1−s)
2 ζE

(
1− s, 1− p

q

)}
.

Proof. From (7.2), (7.3), (7.16) and (7.19), we prove the theorem. �

We will use [x] to denote the integer part of x ∈ R (i.e., [x] is the largest
integer ≤ x); then, the fractional part of x will be {x} = x− [x].

Lemma 7.11. For n ∈ N we have

(7.25) En({x}) = 2(−i)n−1n!

∞∑
k=0

(−1)n−1e(2k+1)πix + e−(2k+1)πix

((2k + 1)π)n+1
.

Proof. Let {x} = x− [x]. The function En({x}) is a quasi-periodic function of
period 2 (see [20]). The Fourier series of En({x}) are given as follows ([1, p.
805, 23.1.16]):

(7.26) En({x}) =
4n!

πn+1

∞∑
k=0

sin((2k + 1)πx− 1
2πn)

(2k + 1)n+1
,

where 0 ≤ x < 1 if n ∈ N and 0 < x < 1 if n = 0, immediately yields

(7.27) E2m({x}) = 4(−1)m(2m)!

∞∑
k=0

sin((2k + 1)πx)

((2k + 1)π)2m+1
,

and

(7.28) E2m+1({x}) = 4(−1)m−1(2m+ 1)!

∞∑
k=0

cos((2k + 1)πx)

((2k + 1)π)2m+2
.

Thus (7.25) follows immediately from (7.27) and (7.28). �

Theorem 7.12. Let m > 1 be a fixed positive odd integer and let α be an
integer such that α 6≡ 0 (mod m). Then, for n ∈ N, we have

(7.29)

m−1∑
r=1

(−1)re−2πir
α
m `E,1−n

( r
m

)
=

(−1)n−1

4

(
mnEn−1

(
2α

m
−
[

2α

m

])
+ En−1(0)

)
− 1

2n

(
mnBn

(
2α

m
−
[

2α

m

])
+Bn(0)

)
.
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Proof. It follows, from (7.3), that for odd m > 1,

(7.30)

m−1∑
r=1

(−1)re−2πir
α
m `E,1−n

( r
m

)
=

(n− 1)!in

2πn

(
m−1∑
r=1

(−1)re−2πir
α
m ζE

(
n,

r

m

)
−(−1)n

m−1∑
r=1

(−1)re−2πir
α
m ζE

(
n,
m− r
m

))

=
(n− 1)!in

2πn

(
m−1∑
r=1

(−1)re−2πir
α
m ζE

(
n,

r

m

)
+(−1)n

m−1∑
r′=1

(−1)r
′
e−2πir

′ α
m ζE

(
n,
r′

m

))

=
(n− 1)!in

2πn

m−1∑
r=1

(−1)r
∞∑
k=0

(−1)k
[
e−2πir

α
m + (−1)ne2πir

α
m

](
k + α

m

)n
=

(n− 1)!inmn

2πn

m−1∑
r=1

∞∑
k=0

(−1)mk+r
[
e−2πiα

(mk+r)
m + (−1)ne2πiα

(mk+r)
m

]
(mk + r)

n

=
(n− 1)!inmn

2πn

∞∑
h=1

h6≡0 (mod m)

∞∑
h=1

(−1)h
[
e−2πiα

h
m + (−1)ne2πiα

h
m

]
hn

=
(n− 1)!inmn

2πn

 ∞∑
h=1

(−1)h
[
e−2πiα

h
m + (−1)ne2πiα

h
m

]
hn

+

∞∑
k=1

(−1)mk
[
e−2πikα + (−1)ne2πikα

]
(km)n

)
.

In the following, we will use the identities below:

(7.31)

∞∑
n=1

(−1)n

ns
= −

∞∑
k=1

1

(2k − 1)s
+

∞∑
k=1

1

(2k)s

and

(7.32) Bn({x}) = −(−i)nn!

∞∑
k=1

e2πikx + (−1)ne−2πikx

(2πk)n
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for n ∈ N (see [39, p. 13, §3] or [26]). Note that, by (7.25) and E′n({x}) =
nEn−1({x}), we have

(7.33) E′n({x}) = 2(−i)nn!

∞∑
k=0

(−1)ne(2k+1)πix + e−(2k+1)πix

πn(2k + 1)n
.

Therefore we have

(7.34)

m−1∑
r=1

(−1)re−2πi
r
m `E,1−n

( r
m

)
=

(n− 1)!inmn

2πn

( ∞∑
k=1

e−2πi(2k)
α
m + (−1)ne2πi(2k)

α
m

(2k)n

−
∞∑
k=1

e−2πi(2k−1)
α
m + (−1)ne2πi(2k−1)

α
m

(2k − 1)n

+ m−n
∞∑
k=1

e−2πi(2k)α + (−1)ne2πi(2k)α

(2k)n

− m−n
∞∑
k=1

e−2πi(2k−1)α + (−1)ne2πi(2k−1)α

(2k − 1)n

)

=
(−1)n−1

4n

(
mnE′n

(
2α

m
−
[

2α

m

])
+ E′n(2α− [2α])

)
− 1

2n

(
mnBn

(
2α

m
−
[

2α

m

])
+Bn(2α− [2α])

)
=

(−1)n−1

4

(
mnEn−1

(
2α

m
−
[

2α

m

])
+ En−1(0)

)
− 1

2n

(
mnBn

(
2α

m
−
[

2α

m

])
+Bn(0)

)
.

This completes our proof. �

Remark 7.13. Equation (7.29) is an analogue of Theorem D in [39], which is
an extension of the classical Eisenstein formula

α

m
−
[ α
m

]
− 1

2
= − 1

2m

m−1∑
γ=1

sin

(
2πγα

m

)
cot
(πγ
n

)
,

where α is an integer with α 6≡ 0 (mod m) and m > 2 is a fixed positive integer.
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