• Title/Summary/Keyword: Euclidean space

Search Result 344, Processing Time 0.025 seconds

A pointed blaschke manifold in euclidean space

  • Kim, Young-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.393-400
    • /
    • 1994
  • Subminifolds of Euclidean spaces have been studied by examining geodesics of the submanifolds viewed as curves of the ambient Euclidean spaces ([3], [7], [8], [9]). K.Sakamoto ([7]) studied submanifolds of Euclidean space whose geodesics are plane curves, which were called submanifolds with planar geodesics. And he completely calssified such submanifolds as either Blaschke manifolds or totally geodesic submanifolds. We now ask the following: If there is a point p of the given submanifold in Euclidean space such that every geodesic of the submanifold passing through p is a plane curve, how much can we say about the submanifold\ulcorner In the present paper, we study submanifolds of euclicean space with such property.

  • PDF

SURFACES FOLIATED BY ELLIPSES WITH CONSTANT GAUSSIAN CURVATURE IN EUCLIDEAN 3-SPACE

  • Ali, Ahmed T.;Hamdoon, Fathi M.
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.537-554
    • /
    • 2017
  • In this paper, we study the surfaces foliated by ellipses in three dimensional Euclidean space ${\mathbf{E}}^3$. We prove the following results: (1) The surface foliated by an ellipse have constant Gaussian curvature K if and only if the surface is flat, i.e. K = 0. (2) The surface foliated by an ellipse is a flat if and only if it is a part of generalized cylinder or part of generalized cone.

CONHARMONICALLY FLAT FIBRED RIEMANNIAN SPACE II

  • Lee, Sang-Deok;Kim, Byung-Hak
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.441-447
    • /
    • 2002
  • We show that the conharmonical1y flat K-contact find cosymplectic manifolds are local1y Euclidean. Evidently non locally Euclidean conharmonically flat Sasakian manifold does not exist. Moreover we see that conharmonically flat Kenmotsu manifold does not exist and conharmonically flat fibred quasi quasi Sasakian space is locally Euclidean if and only if the scalar curvature of each fibre vanishes identically.

CMC SURFACES FOLIATED BY ELLIPSES IN EUCLIDEAN SPACE E3

  • Ali, Ahmad Tawfik
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.701-718
    • /
    • 2018
  • In this paper, we will study the constant mean curvature (CMC) surfaces foliated by ellipses in three dimensional Euclidean space $E^3$. We prove that: (1): Surfaces foliated by ellipses are CMC surfaces if and only if it is a part of generalized cylinder. (2): All surfaces foliated by ellipses are not minimal surfaces. (3): CMC surfaces foliated by ellipses are developable surfaces. (4): CMC surfaces foliated by ellipses are translation surfaces generated by a straight line and plane curve.

KILLING MAGNETIC FLUX SURFACES IN EUCLIDEAN 3-SPACE

  • Ozdemir, Zehra;Gok, Ismail;Yayli, Yusuf;Ekmekci, F. Nejat
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.329-342
    • /
    • 2019
  • In this paper, we give a geometric approach to Killing magnetic flux surfaces in Euclidean 3-space and solve the differential equations which expressed the mentioned surfaces. Furthermore we give some examples and draw their pictures by using the programme Mathematica.

GAUSS MAPS OF RULED SUBMANIFOLDS AND APPLICATIONS I

  • Jung, Sun Mi;Kim, Dong-Soo;Kim, Young Ho;Yoon, Dae Won
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1309-1330
    • /
    • 2016
  • As a generalizing certain geometric property occurred on the helicoid of 3-dimensional Euclidean space regarding the Gauss map, we study ruled submanifolds in a Euclidean space with pointwise 1-type Gauss map of the first kind. In this paper, as new examples of cylindrical ruled submanifolds in Euclidean space, we construct generalized circular cylinders and characterize such ruled submanifolds and minimal ruled submanifolds of Euclidean space with pointwise 1-type Gauss map of the first kind.

ATHWART IMMERSIONS WITH CODIMENSION p⩾2 INTO EUCLIDEAN SPACE

  • Beltagy, M.A.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 1988
  • In this paper we define the athwart immersions with codimension p⩾2 into Euclidean space. Some results supported by geometric examples have been established. A comparison study has been carried out throughout the paper.

  • PDF

Research on Pre-service Teacher Education Through Understanding of Conic Sections in Non-Endidean Geometry (비유클리드 기하학에서 이차곡선의 이해를 통한 예비교사교육)

  • Jieun Kang;Daehwan Kim
    • Journal of Science Education
    • /
    • v.47 no.3
    • /
    • pp.263-272
    • /
    • 2023
  • We consider how a pre-service teacher can understand and utilize various concepts of Euclidean geometry by learning conic sections using mathematical definitions in non-Euclidean geometry. In a third-grade class of D University, we used mathematical definitions to demonstrate that learning conic sections in non-Euclidean space, such as taxicab geometry and Minkowski distance space, can aid pre-service teachers by enhancing their ability to acquire and accept new geometric concepts. As a result, learning conic sections using mathematical definitions in taxicab geometry and Minkowski distance space is expected to contribute to enhancing the education of pre-service teachers for Euclidean geometry expertise by fostering creative and flexible thinking.

ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE 𝔼5

  • Erhan Guler
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.585-597
    • /
    • 2023
  • We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space 𝔼5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal Δx=𝓐x, where 𝓐 is the 5 × 5 matrix in 𝔼5.