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ATHWART IMMERSIONS WITH CODIMENSION p>>2
INTO EUCLIDEAN SPACE

By M.A. Beltagy

Abstraet: In this paper we define the athwart immersions with codimension
p>2 into Euclidean space. Some results supported by geometric examples have
been established. A comparison study has been carried out throughout the paper.

1. Introduction

In this work, we are concerned with a problem, namely, the athwart immer-
sions of z-manifolds into (#+p)-Euclidean space E""? where p>2. In case of
p=1, the problem has been considered by Robertson and Craveiro de Carvalho
[4]. The athwartness definition as it has been given in [4] may be stated as
follows: Let M and N be C~, closed, connected, #-manifolds and let f and g
be smooth immersions of M and N, respectively, into E" we say that f is
athwart to g-written fAg-if and only if f(M) and g(N) have no tangent
hyperplane in common.

In[4], the question: In what curcumistances is ffig 7 has been answered. In
fact, the following theorems have been proved.

THEOREM (i). Let f: M—E"" and g:N——»E"'l be smooth immersions
of the n-manifolds M and N. If f(M) has two tangent n-planes such that one
meets g(N) and the other does not, then f is not athwart to g.

THEOREM (ii) Let f: M—E" Z and g N—E" ! be immersions such that
FM)Ng(N)#Q. Then f is not athwart to g.

THEOREM (iii). Let f and g be two immersions of the unit circle st in E°,
If fRg, Then the image of one of the immersions is inside all the loops of (he
other.

THEOREM (iv). Let f:;M—-E'Hl and g: N —'E"‘l be {mmersions such

that fRg. Then one of the manifolds, say M, is diffeomorphic to the n-dimen-
sional unit sphere S", fisan tmbedding with starshaped inside and g(N) is
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contained in the interior of the kernel of the inside of f.

In[1], the problem of athwart immersions with codimension 1 into hyperbolic
space H "*! has been considered. The definition of athwartness in this case is
given in terms of tangent totally geodesic hypersurfaces instead of tangent
hyperplanes in case of the ambient Euclidean space. Theorems (i-iv) have been
proved in [1] to be valid in case of H" 4

Recently, the problem of athwart immersions into sphere has been studied in
[2]. The results obtained in [1] were found to be nonconsistant with those
for the case of E"
nonconsistency is the existence of conjugate points on the sphere surface. When
restricting oneself to athwart immersions in an open hemisphere instead of the
whole of the sphere, the results were found to be completely consistent with

. . . ntl ntl
those of the immersions in E and H .

and $" " as ambient spaces. One of the reasons of the

In both [1] and [2] the central projection map has been used successfully to
construct a nice correspondence between athwart immersions in hyperbolic space

as the open hemisphere and the same problem in the Euclidean space.

2. Definitions and backgrounds

We begin this article with mentioning what is meant by athwart immersions
of smooth, closed, z-manifolds into E" ”, where p>2 is an integer.

Let M and N be C”, compact, n-manifolds and let f: M—E" ” and g:
N—sg*"? (p>2) be C” immersions of M and N, respectively. The immersion
[ is said to be athwart to g (denoted by ffig) if there is no linear subvariety
of dimension # tangent to both f(M) and g(N). In this way of definition, the
immersions f and g are not athwart if there exists a pair of points p&=M and
¢&N such that T pM =TqN where TpM denotes the tangent space of M at p.

An immersion f: M S (p>>2) of an n-manifold M is called substantial
if (M) is not contained in an (#-1)-subariety of E™" In other words a
substantial immersion is a sizable immersion.

REMARK. If the two immersions f and g are non-substantial and contained
together in the same (% +1)-subvariety of E "*? then all the results concerning
athwart immersions (Theorems (i)—(iv)) are applied. This particular situation
represents a reasonable motivation to restrict ourselves to dealing with substantial
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immersions or non-substantial immersions which are not contained in the same
lincar subvariety.

Now, in the following simple geometric example we show that theorems (i)
and (ii) are not valid for immersions of codimension p>2.

E\AMPI . (i) Consider M and N to be S'. Let f and g be two 1mbedd1ngs of
S' in E® such that f imbedds S' as a unit circle in the xy-plane m E’ with
center at 0 and g does the same thing in the yz-plane. Clearly, f(S ) has two
tangent lines T and T, where T, meets g(Sl) and T2 does not(See next Fig. ).

In the figure we could not find a common tangent line to both f(Sl) and g(Sl).
Hence f is athwart to g.

EXAMPLE (ii). If we consider the same figure, we should have two immersi-
ons f and g such that f(Sl)ﬂg(Sl);éO while f is athwart to g.

As the inside (or outside) of a loop in E” as well as the kernel of the imm-
ersion in case of codimension greater than one do not make sense we could not
give examples to show to what extent theorems (iii) and (iv) are valid.

3. Main Work

The main work of this paper which is precisely incorporated in finding some
necessary and sufficient conditions for immersions to be athwart lies in three
different parts (a), {b), and (c). In part (a), we investigate the case when
the two immersions are substantial. The second one, part (b), deals with the
case when one of the considered immersions is substantial and the other is not.
The case of two non-substantial immersions is studied in part (c).
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From now on, M and N are taken to be closed C~, #-manifolds and all
immersions are smooth enough for all discussions to make sense. The integer p
always satisfies p>2.

Part (a): Wholly Substantial Case.

PROPOSITION (i) Let f: M—E"" ana g2: N—E""? be two smooth immer-
stons such that f(M) is contained on the surface of a convex closed hypersurface
M and g(N) is contained in the open interior of M, then f is athwart to g.

PROPOSITION (ii). Let f and g (in prop. (1)) be both contained on a surface
of a strictly convex closed hypersurface N such that f[1g=0, then f is atwart

to g.

PROOF OF PROPOSITION (i) In contrary to the required result, assume that
f is not atwart to g. Then there exists a common »-linear subvariety H" of
E"'? tangent to both f(M) and g(N). Let plef(M) and paeg(N) represent the

points of tangency. The tangency of H" to both SF(M) and g(N) ensures that
there exists a tangent hyperplane H"""7' to the convex hypersuface M at
», which contains H". In this way, the tangent hyperplane H" i divides M
into two (or more) pieces contradicting the convexity of M. The contradiction
shows that f is athwart to g.

ROOF OF PROPOSITION (ii). Let f and g be two immersions contained on
the surface of a strictly convex hypersurface N of E"? and FMHNgN)=0
as being mentioned in the proposition. Let us carry out the proof by the way
of contradiction as it has just been done with prop. (i).

Assume that f and g are non-athwart, consequently there exists an n-linear
subvariety H" which represents a tangent space to both f(M) and g(N) at
p, and p,, respectively. Hence, there would be a straight line, say L, which
touches N at two different points. Consider the tangent hyperplane N 5, of N
at p, which contains L, p, and p,. This hyperplane, in view of the above
arguments, touches N at p, and intersects N again at p, contradicting the fact
that N is strictly convex and the proof is now complete.

REMARKS, (a) In the same way of proof we can easily show that if the
condition f1g=0 in prop. (ii) is replaced by the term “f intersects g transver-
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sally”, the proposition is still true.

(b) Athwartness property of submanifolds can be adopted as a good measure
of strict convexity in the following sense: If each two transversally intersecting
submanifolds on the surface of a closed hypersurface N of E"" are athwart,
then N is strictly convex. The proof of this idea is now clear in the light of
the above mentioned propositions.

Part (b): Semi-substantial Case.

PROPOSITION (iii). If g(N) is contained in an (n-+-1)-linear subvarietv -k
and f(M) is substantial, then [ is athwart to g in the following cases:

@ fonNH""=0

() f(M) intersects H" + transversally.

(c) f(M) intersects H S tangentially but not along any tangent space of g(N).

PROOF. (a) As g(N) is contained wholly in H""', then all tangent spaces
of g(N) are also contained in H"''. Hence, if FOM)NH""'=0, no tangent
space of f(M) is contained in " and consequently, no tangent space of
g(N) coincides with a tangent space of f(M).

(b) When f(M) intersects ;g transversally, there is no tangent space of
F(M) lying in H"" and hence there is no common tangent n-linear subvariety
between f(M) and g(N).

(¢) We leave this part to the reader as a geometric exercise.

PROPOSITION (iv). If g(N) is contained in an (n+1)-linear subvariety H" ;
such that J‘é,INTXI\T < H"" and (M) intersects H"™" in the interior region of

the kernel of the inside of g(N), then ffig.

PROOF. The proof of this proposition depends heavily on a theorem establi-
shed by B. Halpern [3] which states that; For a smooth immersion g: N—
E"", dim N=n, if UT,N# E""" then N is diffcomorphic to S", g is an
imbedding, the insid::?)? g(N) is starshaped and E" : IHIQVTXN is the interior

of the kernel of the inside of g.

Taking this theorem into account and due to the fact that all tangent spaces
of g(N) are in H"’H, and moreover, that f(M) intersects H"™ in the interior
of the kernel of the inside of g(N), there would be no tangent space of f(M)
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coincident with a tangent space of g(N).
It is worth mentioning that even if f(M) is intersecting H"-H tangentially
the proposition is still valid.

Part (¢): Wholly Non-substantial Case

The simplest case considered in this work is the one under consideration.
The situation is now divided into two different portions, parallel and transve-
rsal cases. Proposition (v) deals with the first case while proposition (vi) treats
the other one.

PROPOSITION (v). If the immersions f and g are non-substantial such that
FODCH, " and gNCH, ' and ' NH) '=0, then fAg.
(The proof of this proposition is too simple).

PROPOSITION (vi). For the immersions f and g in proposilion (v), if H;'H
['1]{:"‘ -0, then f is athwart to g if and only if H:i'h H;'Fl does not represent

a common tangent space to both f(M) and g(N).

The proof of this proposition comes out as a direct geometric result. As an
application, the following geometric attitudes represent some athwartness cases:

n-+

@ fO0 NHT'N By =0

(b) f(M) intersects H:":"lﬂ H;i'l transversally.
Same things are true when replacting f(M) by(N).

NOTE. All the results of this paper can be proved true when considering
immersions into hyperbolic spaces instead of the Euclidean ones. One can use.
to acheive this aim-the central projection map as it has been done in [1].
Considering immersions into elliptic space needs careful study as we expect a
great alterations in the results.
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