DOI QR코드

DOI QR Code

KILLING MAGNETIC FLUX SURFACES IN EUCLIDEAN 3-SPACE

  • Ozdemir, Zehra (Department of Mathematics, Faculty of Science and Arts, Amasya University) ;
  • Gok, Ismail (Department of Mathematics, Faculty of Science, University of Ankara) ;
  • Yayli, Yusuf (Department of Mathematics, Faculty of Science, University of Ankara) ;
  • Ekmekci, F. Nejat (Department of Mathematics, Faculty of Science, University of Ankara)
  • Received : 2018.10.18
  • Accepted : 2019.01.29
  • Published : 2019.06.25

Abstract

In this paper, we give a geometric approach to Killing magnetic flux surfaces in Euclidean 3-space and solve the differential equations which expressed the mentioned surfaces. Furthermore we give some examples and draw their pictures by using the programme Mathematica.

Keywords

HNSHCY_2019_v41n2_329_f0001.png 이미지

FIGURE 1. Flux surface X(u,v)=(cos u, sin v, sin(cos 2v - cos 2u)3.

HNSHCY_2019_v41n2_329_f0002.png 이미지

FIGURE 2. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, 2 sin v cos v.

HNSHCY_2019_v41n2_329_f0003.png 이미지

FIGURE 3. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, v3 - 6v).

HNSHCY_2019_v41n2_329_f0004.png 이미지

FIGURE 4. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, v2 + 4v).

HNSHCY_2019_v41n2_329_f0005.png 이미지

FIGURE 5. X(u,v)=((2 + cos v) cos u, (2 + cos v) sin u, v3 + 6v).

HNSHCY_2019_v41n2_329_f0006.png 이미지

FIGURE 6. Flux surface X(u,v)=($\sqrt{uv}$, sin(uv)3, 1/2 sin(2uv)).

HNSHCY_2019_v41n2_329_f0007.png 이미지

FIGURE 7. Flux surface and magnetic curves γ1(Black), γ2(Green) and γ3(Red) on this surface.

References

  1. A. T. Ali, R. Lopez, Slant helices in Minkowski space, J. Korean. Math. Soc. 48 (2011) 159-167. https://doi.org/10.4134/JKMS.2011.48.1.159
  2. M. Barros, A. Romero, Magnetic vortices, EPL. 77 (2007) 1-5.
  3. M. Barros, J. L. Cabrerizo, M. Fernandez, A. Romero, Magnetic vortex filament flows J. Math. Phys. 48 (2007) 1-27.
  4. M. Barros, A. Ferrandez, P. Lucas, M. A. Meronno, General helices in the 3-dimensional Lorentzian space forms Rocky. Mountain. J. Math. 31(2001) 373-388. https://doi.org/10.1216/rmjm/1020171565
  5. A. H. Boozer, Physics of magnetically confined plasmas, Rev. Mod. Phys. 76 (2004) 1071-1141. https://doi.org/10.1103/RevModPhys.76.1071
  6. S. L. Drut-Romaniuc, M. I. Munteanu, Magnetic curves corresponding to Killing magnetic fields in ${\mathbb{E}}^3$, J. Math. Phys. 113506(2011).
  7. I. Gok, C. Camci, Almost contact surfaces in Sasakian 3-manifold $^3(-3)$, submitted to publish.
  8. H. A. Hasimoto, Soliton on a vortex filament, J. Fluid. Mech. 51 (1972) 477-485. https://doi.org/10.1017/S0022112072002307
  9. H. Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Jpn. 31 (1971) 293-294. https://doi.org/10.1143/JPSJ.31.293
  10. R. D. Hazeltine, J. D. Meiss, Plasma Confinement, Dover publications, inc. Mineola, New York, 2003.
  11. J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, New York, NY, USA: Springer-Verlag, 1994.
  12. P. D. Scofield, Curves of Constant Precession, Amer. Math. Monthly. 102(1995) 531-537. https://doi.org/10.1080/00029890.1995.12004613
  13. R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, Wiley. ISBN 0-471-07392-X, 1960.
  14. T.S. Pedersen, A. H. Boozer, Confinement of nonneutral plasmas on magnetic surfaces. Phys. Rev. Lett. 88 (2002), 205002. https://doi.org/10.1103/PhysRevLett.88.205002