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KILLING MAGNETIC FLUX SURFACES IN

EUCLIDEAN 3-SPACE

Zehra Özdemir∗, İsmail Gök, Yusuf Yayli,
and F. Nejat Ekmekci

Abstract. In this paper, we give a geometric approach to Killing
magnetic flux surfaces in Euclidean 3-space and solve the differential
equations which expressed the mentioned surfaces. Furthermore we
give some examples and draw their pictures by using the programme
Mathematica.

1. Introduction

A divergence free vector field called as magnetic field. A smooth
surface with normal vector is a flux surface of a smooth vector field
if g(V,N) is zero everywhere on M where g is inner product on M .
The best example we can give to the flux surfaces (magnetic surface) is
plasma. A plasma is a hot ionized gas consisting of approximately equal
numbers of positively charged ions and negatively charged electrons.
Considering the outermost bounding surfaces of magnetically confined
plasma, the implication for plasma confinement become clear. If plasma
is assumed magnetized everywhere, the magnetic field can not vanish on
this surfaces. Hazeltine et al. have shown that the outermost, bounding
surface must be a flux surface, it is natural to suppose the confinement
region to be filled by a sequence of flux surfaces, each enclosing the next.
In fact, flux surfaces provide a barrier to collisionless charged particles
in the magnetic field [10]. Most of the universe is in the form of a plasma
with a magnetic field perforated. The most common example of flux sur-
faces is flux tubes. As used in astrophysics, a flux tube generally has a
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larger magnetic field and other properties that differ from the surround-
ing space. These flux tubes are commonly found around many stars and
around the sun. Some planets also have flux tubes. A well-known ex-
ample is the flux tube between Jupiter and its moon ”io” [13, 5, 10, 14].
It has been necessary to confine or limit the plasma to examine the
magnetic field lines and the charged particles motions in the magnetic
field. For this, Penning has developed a model called Penning trap. This
model has been one of the most successful models and has contributed
greatly to the work done in this area. However, this model can be use for
confinement of single species plasmas. Later, the importance of flux sur-
faces has long been recognized in magnetic fusion research. For the first
time, Pedersen et al. Showed that non-neutral plasmas can be confined
to flux surfaces. These surface configurations, such as stellarators and
tokamaks, are highly developed and studied in the context of thermonu-
clear fusion, and have recently become of interest for the confinement
of non-neutral plasmas. They have certain advantages over open and
closed field line systems, such as the Penning trap. These configura-
tions confine both positive and negative species simultaneously, at any
level of charge imbalance from pure electron to quasi-neutral. They may
provide stabilization of diocotron modes, and confine energetic electrons
and positrons at modest magnetic field strengths. Hence, such con-
figurations have unique advantages for confine non-neutral electron-ion
plasmas and antiproton positron plasmas in the positron electron lab-
oratory. Moreover, can cause it to produce anti-hydrogen in abundant
quantities [14].

In [5], a local non-orthogonal coordinate system, zero-framed with re-
spect to the knot, is introduced, and the field is decomposed into toroidal
and poloidal ingredients with respect to this system. The helicity of the
field is then determined; this vanishes for a field that is either purely
toroidal or purely poloidal. The magnetic energy functional is calcu-
lated under the simplifying assumptions that the tube is axially uniform
and of circular cross-section. The case of a tube with helical axis is
first considered, and new results concerning kink mode instability and
associated bifurcations are obtained by Boozer.

On the other hand, a charged particle in a magnetic field experiences
a force which called as Lorentz force. Due to this force it traces out a
path called as magnetic curves. Magnetic curve plays an important role
between physics and differential geometry. In terms of physics, when
a charged particle enters the magnetic field besides the velocity vector
(tangent vector) is expressed to the magnetic field and experience a
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force. So, charged particle follows a trajectory called magnetic curve
with the influence of the force. For example, if T tangent vector field
field enters (pass through) in the V static magnetic field with constant
angle due to the Lorentz force particle traces helical path. Specifically,
if the tangent vector field of the trajectory of the charged particle is
perpendicular to magnetic field it traces a circular path. On the other
hand, if the charged particle’s tangent vector moves parallel to magnetic
field, the Lorentz force acts zero. In terms of differential geometry, a
magnetic field is defined by the property that its divergence is zero in
3D manifolds. Because of the fact that Killing vector field is divergence
free, it is created magnetic field called [2, 3, 4].

The magnetic trajectories of magnetic field are curves satisfying the
Lorentz force equation

∇γ′γ′ = φ(γ′) = V × γ′

which generalizes the equation of geodesics under the condition ∇γ′γ′ =
0. In contrast to geodesics, magnetic curves are not reversible and they
cannot be rescaled, that is, the trajectories depend on the energyν(t) =
‖γ′‖ = ν0. In a sense, magnetic curves is one of the generalizations of
the notion of geodesics. If the curve is an arc-length curve it is called a
normal magnetic curve.

Through this equation magnetic curves can found many useful ap-
plications in analytical chemistry, biochemistry, atmospheric science,
geochemistry, cyclotron, proton, cancer therapy, and velocity selector.
Moreover, the solutions of the Lorentz force equation are Kirchhoff elas-
tic rods. This provides an amazing connection between two apparently
unrelated physical models and, in particular, it ties the classical elastic
theory with the Hall effect (see for details [3, 8, 9]).

A given smooth surface M with normal vector N is a flux surface of
a magnetic vector field V if g(V,N) is zero everywhere on M. In other
words, the magnetic field does not cross the surface M anywhere, i.e.,
the magnetic flux traversing M is zero. It is then possible to define a
scalar flux function f such that its value is constant on the surface M ,
and

g(V,∇f) = 0.

In three dimensions, the only closed flux surface corresponding to a
non-vanishing vector field is a topological toroid. This fact lies at the
basis of the design of magnetic confinement devices.

Assuming the flux surfaces have this toroidal topology, the functionf
defines a set of nested surfaces, so it makes sense to use this function to
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label the flux surfaces, i.e., f may be used as a ”radial” coordinate. Each
toroidal surface f encloses a volume V(f). The surface corresponding
to an infinitesimal volume V is essentially a line that corresponds to the
toroidal axis (called magnetic axis when V is a magnetic field). The flux
F through an arbitrary surface M is given by

F =

∫
S
g(V,N)dS

When V is a magnetic field with toroidal nested flux surfaces, two
magnetic fluxes can be defined from two corresponding surfaces [10].
The poloidal flux is defined by

Ψ =

∫
Sp

g(V,N)dS

where Sp is a ring-shaped ribbon stretched between the magnetic
axis and the flux surface f . (Complementarily, Sp can be taken to be a
surface spanning the central hole of the torus [5]) Likewise, the toroidal
flux is defined by

Φ

∫
St

g(V,N)dS

where St is a poloidal section of the flux surface. In the present pa-
per, we have noted that the equation of a flux surface may be written in
the form of differential equations. Then these equations can be solved
as in partial differential equation. Also, it is known that the only closed
flux surface corresponding to a non-vanishing vector field is a topolog-
ical toroid, in three dimensions. We obtain the torus as the solution
of the partial differential equation. The development of the physics of
magnetically confined plasmas has important value for the study of space
and astrophysical plasmas. Positive and negative charged ions and nega-
tively charged electrons in a fusion plasma are at very high temperatures
and accordingly have large velocities. To continue the fusion process,
the particles from the hot plasma should be confined to a zone or the
plasma should be allowed to cool rapidly. Magnetic confinement fusion
devices take advantage of the fact that charged particles in a magnetic
field experience a Lorentz force and track helical trajectories along the
field lines.A number of topics in physics have been developed primarily
through research on magnetically confined plasmas. Therefore, we give
a geometrical approach these studies and the results in this study have
some useful applications for the design of magnetic confinement devices.
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2. Preliminaries

Let (M, g) be a 3−dimensional Riemannian manifold with the stan-
dard flat metric g defined by

(1) g(X,Y ) = x1y1 + x2y2 + x3y3

for all X = (x1, x2, x3), Y = (y1, y2, y3) ∈ χ(M).
The Lorentz force of a magnetic field F on M is defined to be a skew

symmetric operator given by

(2) g(φ(X), Y ) = F (X,Y )

for all X, Y ∈ χ(M).
The cross product of two vector fields X, Y ∈ χ(M) is given by

(3) X × Y = (x2y3 − x3y2, x3y1 − x1y3, x2y1 − x1y2).
Then, the mixed product of the vector fields X, Y, Z ∈ χ(M) is defined
by

(4) g(X × Y,Z) = dvg(X,Y, Z)

where dvg denotes a volume on M.
A unit vector field V on M is Killing if and only if it satisfies the

Killing equation

(5) g(∇Y V,X) + g(∇XV, Y ) = 0

where X, Y ∈ χ(M) and ∇ is the Levi-Civita connection on M.
Let V be a Killing vector field and FV = ıV dvg be the corresponding

Killing magnetic force on M where ı denotes the inner product. Then
the Lorentz force of the FV given as

(6) φ(X) = V ×X.
for all X ∈ χ(M) [4]. Consequently, the magnetic trajectories γ deter-
mined by V are solutions of the Lorentz force equation written as

(7) φ(γ′) = ∇γ′γ′ = V × γ′.
A unit speed curve γ is a magnetic trajectory of the magnetic field V if
and only if V can be written along γ as

(8) V (s) = $(s)T (s) + κ(s)B(s)

where T and B are the tangent and binormal vectors of the curve γ,
respectively (see ref. [4]).

The fundamental solutions of
Eq.(5)

{
∂
∂x ,

∂
∂y ,

∂
∂z ,−y

∂
∂x + x ∂

∂y ,−z
∂
∂y + y ∂

∂z , z
∂
∂x − x

∂
∂z

}
give a basis of
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Killing vector fields on 3−dimensional Euclidian space E3. Where x, y

and z denote the global coordinates on E3 and R3 = span
{
∂
∂x ,

∂
∂y ,

∂
∂z

}
is considered as a vector space [4, 6].

In this paper, we determine Flux surfaces of the Killing vector fields
V = ∂

∂z and V = −y ∂
∂x +x ∂

∂y . The other vector fields ∂
∂x ,

∂
∂y ,−z

∂
∂y +y ∂

∂z

and z ∂
∂x−x

∂
∂z determine the same classifications for corresponding mag-

netic Flux surface. In this paper, our aim is to investigate all flux sur-
faces corresponding to Killing magnetic fields on 3−dimensional Euclid-
ian space E3.

3. Killing Flux Surfaces in Euclidean 3-Space

Definition 3.1. A given smooth surface M with its normal vector
field N is a flux surface of a smooth vector field V when g(V,N) = 0
everywhere on M. If V is a Killing magnetic field then the flux surface
M called as Killing magnetic surface of V.

Theorem 3.2. Let M be a surface in Euclidean 3-space and

X(u, v) = (x1(u, v), x2(u, v), x3(u, v))

be parametrization of M . Then M is a flux surface of magnetic vector
field V = −y ∂

∂x + x ∂
∂x if and only if

(9)
∂x3
∂u

(
x1
∂x1
∂v

+ x2
∂x2
∂v

)
− ∂x3

∂v

(
x1
∂x1
∂u

+ x2
∂x2
∂u

)
= 0.

Proof. Let X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be a parametriza-
tion of M in Euclidean 3-space. Then its unit normal vector given by

N =
1

‖Xu ×Xv‖

 ∂x2
∂u

∂x3
∂v −

∂x2
∂v

∂x3
∂u ,

∂x1
∂v

∂x3
∂u −

∂x1
∂u

∂x3
∂v ,

∂x1
∂u

∂x2
∂v −

∂x1
∂v

∂x2
∂u


Since X(u, v) is a flux surface of magnetic vector field V = −y ∂

∂x + x ∂
∂y

we have
g(N,V ) = 0.

This implies that

∂x3
∂u

(
x1
∂x1
∂v

+ x2
∂x2
∂v

)
− ∂x3

∂v

(
x1
∂x1
∂u

+ x2
∂x2
∂u

)
= 0.

Conversely if we assume that Eq.(9) holds, then it is easily seen that
g(N,V ) = 0. Thus X(u, v) is a flux surface of magnetic vector field
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V = −y ∂
∂x + x ∂

∂y . Similar discussion can make for −z ∂
∂y + y ∂

∂z and

−z ∂
∂x + x ∂

∂z .

Now we give a solution for differential equation Eq.(9) and draw its
picture using the Mathematica programme.

Solution 3.3. Let M be a flux surface of magnetic vector field V =
−y ∂

∂x + x ∂
∂x in Euclidean 3-space. Then M satisfy Eq.(9). Loss of the

generality we may take A(u, v) = x1
∂x1
∂v +x2

∂x2
∂v , B(u, v) = x1

∂x1
∂u +x2

∂x2
∂u

in Eq.(9) we have following differential equation

(10) A(u, v)
∂x3
∂u
−B(u, v)

∂x3
∂v

= 0.

In order to give an example we solve Eq.(10), then we get x3(u, v) = c,
c is a constant. Then we can write

dx3 = x3udu+ x3vdv = 0.

This gives us

(11)
x3u
x3v

= −dv
du
.

Using Eq.(10) and Eq.(11), we obtain following differential equation

dv

du
=
B(u, v)

A(u, v)
.

From the last equation we get characteristic coordinates ξ = u and η =

ψ(u, v) in Eq.(10) where {ξ, η} is linear independent set and ∂(ξ,η)
∂(u,v) 6= 0.

Consequently, we obtain x3(u, v) = f(η). Then, for certain x1(u, v) and
x2(u, v) we have the flux surface as

X(u, v) = (x1(u, v), x2(u, v), f(η)).

Example 3.4. Let M be a flux surface of magnetic vector field V =
−y ∂

∂x + x ∂
∂x in Euclidean 3-space. Then M satisfy Eq.(9). If x1(u, v) =

cos(u), x2(u, v) = sin(v) then using the Eq.(9) we have

sin v cos v
∂x3
∂u

+ cosu sinu
∂x3
∂v

= 0

and this gives as

(12)
dv

du
=

cosu sinu

sin v cos v
⇒ cos 2v − cos 2u = c.

From Eq.(12) we have

ξ = u,
η = cos 2v − cos 2u.
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Consequently, flux surface of magnetic vector field V = −y ∂
∂x + x ∂

∂x
given by

X(u, v) = (cosu, sin v, f(cos 2v − cos 2u)).

Figure 1. Flux surface X(u,v)=(cosu, sin v, sin(cos 2v − cos 2u)3.

Example 3.5. Let M be a flux surface of magnetic vector field V =
−y ∂

∂x + x ∂
∂y in Euclidean 3-space. Then M satisfy Eq.(9). If x1(u, v) =

(c+ a cos v) cosu, x2(u, v) = (c+ a cos v) sinu then using the Eq.(9) we
have the solutions of the equation as

X(u, v) = ((c+ a cos v) cosu, (c+ a cos v) sinu, f(v)).

We will give some examples below as a result of the equation.

Figure 2. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, 2 sin v cos v.
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Figure 3. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, v3 − 6v).

Figure 4. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, v2 + 4v).

Corollary 3.6. The topological torus is a flux surface of magnetic
field V = −y ∂

∂x + x ∂
∂x .

Proof. It is easily seen that the surface X(u, v) satisfy Eq.(9), so we
can say that torus is a flux surface of magnetic field V = −y ∂

∂x+x ∂
∂x .

Theorem 3.7. Let M be a surface in Euclidean 3-space and

(13) X(u, v) = (x1(u, v), x2(u, v), x3(u, v))

be parametrization of M . Then M is a flux surface of magnetic vector
field V = ∂

∂z if and only if

(14)
∂x1
∂u

∂x2
∂v
− ∂x1

∂v

∂x2
∂u

= 0.

Proof. Let X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be a parametriza-
tion of M in Euclidean 3-space. Then its unit normal vector N given by
Eq.(3). Since X(u, v) is a flux surface of magnetic vector field V = ∂

∂z
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Figure 5. X(u,v)=((2 + cos v) cosu, (2 + cos v) sinu, v3 + 6v).

we have
g(N,V ) = 0

it implies that
∂x1
∂u

∂x2
∂v
− ∂x1

∂v

∂x2
∂u

= 0.

Conversely if we assume that X(u, v) satisfy Eq.(14) then it is easily
seen that g(N,V ) = 0. Thus X(u, v) is a flux surface of magnetic vector
field V = ∂

∂z . Similar discussion can make for ∂
∂x and ∂

∂y .

Now we give a solution for differential equation Eq.(14) and draw its
picture using the Mathematica programme.

Solution 3.8. Let X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be a flux
surface of magnetic vector field V = ∂

∂z in Euclidean 3-space. Then

M satisfy Eq.(14). Loss of the generality we may take ∂x1
∂u = A(u, v),

∂x1
∂v = B(u, v) in Eq.(14), then we have following differential equation

(15) A(u, v)
∂x2
∂u
−B(u, v)

∂x2
∂v

= 0.

In order to solve Eq.(15) we get η = x2(u, v) = c, c is a constant. Then
we can write

dx2 = x2udu+ x2vdv = 0.
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This gives

(16)
x2u
x2v

= −dv
du
.

Using Eq.(15) and Eq.(16) we obtain following differential equation

dv

du
=
B(u, v)

A(u, v)
.

From the last equation we get characteristic coordinates ξ = u and η =

ψ(u, v) in Eq.(15) where {ξ, η} is linear independent set and ∂(ξ,η)
∂(u,v) 6= 0.

Consequently, we obtain x2(u, v) = g(η). Then for certain x1(u, v) we
have the flux surface as

X(u, v) = (x1(u, v), g(η), x3(u, v)).

Example 3.9. Let X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be a flux
surface of magnetic vector field V = ∂

∂z in Euclidean 3-space. Then
X(u, v) satisfy Eq.(14). If x1(u, v) =

√
uv then using the Eq.(14) we

have
v

2
√
uv

∂x2
∂v
− u

2
√
uv

∂x2
∂u

= 0

and this gives us

(17)
dv

du
= −v

u
⇒ uv = c.

From Eq.(17) we have

(18)
ξ = u,
η = uv.

Consequently flux surface of magnetic vector field V = ∂
∂z given by

X(u, v) = (
√
uv, f(uv), x3(u, v)).

Theorem 3.10. Let γ be a curve on the Killing Flux surface M.
Then γ is a magnetic curve if and only if γ is a geodesic curve on M.

Proof. Let γ be a magnetic curve on the Flux surface M. Then γ
satisfy Eq.(8). Using Eq.(8) and Definition 1 we can easily see that γ is
a geodesic curve.
Conversely, we assume that γ is a geodesic curve on M then γ satisfy
Eq.(8). This gives us γ is a magnetic curve.



340 Zehra Özdemir, İsmail Gök, Yusuf Yayli, and F. Nejat Ekmekci

Figure 6. Flux surface X(u,v)=(
√
uv, sin(uv)3, 1/2 sin(2uv)).

Definition 3.11. X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be a parame-
trization at a point p ∈ S of a surface S in 3−dimensional almost contact
metric manifold R3(−3). We call S is a distribution surface if the unit
normal vector field of S belongs to contact distribution (see for details
in [7]).

Corollary 3.12. Let M be a surface in Sasakian 3 manifold R3(−3)
and
X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) be parametrization of M. Then
M is a flux surface of magnetic vector field ξ if and only if M is a
distribution surface.

Proof. It is obvious from Definition (3.1) and Definition (3.11).

Example 3.13. Let X(u, v) = (cosu, sin v, sin(cos 2v − cos 2u)3) be
a flux surface of magnetic field V = −y ∂

∂x + x ∂
∂x and γ be magnetic

trajectories of V . From last theorem we can easily say that γ1(s) =
(0, sin s, sin(cos 2s + 1)3), γ2(s) = (cos s, sin s, 0) and γ3(s) = (cos s, 1,
− sin(1 + cos 2s)3) are magnetic curves on the flux surface X(u, v).
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Figure 7. Flux surface and magnetic curves
γ1(Black), γ2(Green) and γ3(Red) on this surface.
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