GAUSS MAPS OF RULED SUBMANIFOLDS AND APPLICATIONS I

Sun Mi Jung, Dong-Soo Kim, Young Ho Kim, and Dae Won Yoon

Abstract

As a generalizing certain geometric property occurred on the helicoid of 3 -dimensional Euclidean space regarding the Gauss map, we study ruled submanifolds in a Euclidean space with pointwise 1-type Gauss map of the first kind. In this paper, as new examples of cylindrical ruled submanifolds in Euclidean space, we construct generalized circular cylinders and characterize such ruled submanifolds and minimal ruled submanifolds of Euclidean space with pointwise 1-type Gauss map of the first kind.

1. Introduction

An immersion x of a manifold M into a Euclidean space \mathbb{E}^{m} is said to be of finite type if it can be expressed as

$$
x=x_{0}+x_{1}+\cdots+x_{k}
$$

for some positive integer k, where x_{0} is a constant vector and $\Delta x_{i}=\lambda_{i} x_{i}$ for some $\lambda_{i} \in \mathbb{R}, i=1, \ldots, k$. Here Δ denotes the Laplace operator defined on M. If $\lambda_{1}, \ldots, \lambda_{k}$ are mutually different, M is said to be of k-type. In particular, the minimal submanifolds are very typical finite type submanifolds, namely 1-type submanifolds.

A ruled surface or a ruled submanifold is one of the typical geometric objects that many mathematicians have studied with great interest in the classical differential geometry. Due to Catalan's Theorem, the only minimal ruled surfaces

[^0]in Euclidean 3-space \mathbb{E}^{3} are the planes and the helicoids. J. M. Barbosa, M. Dajczer and L. P. Jorge investigated the minimal ruled submanifolds and showed that those of Euclidean space are the generalized helicoids [1]. By using the notion of finite type immersion, B.-Y. Chen et al. showed that a ruled surface of finite type in an m-dimensional Euclidean space is part of either a cylinder over a curve of finite type or a helicoid in \mathbb{E}^{3} [4]. In particular, making use of the character of plane curves of finite type, we see that a ruled surface of finite type in \mathbb{E}^{3} is part of a plane, a circular cylinder or a helicoid. And in [9], F. Dillen extended these results to ruled submanifolds of finite type in Euclidean space.

Since the notion of finite type immersion of Riemannian manifolds into Euclidean space was introduced by B.-Y. Chen in the late 1970's, such a notion has been extended to submanifolds in pseudo-Euclidean space and to smooth functions defined on submanifolds of Euclidean space or pseudo-Euclidean space [2]. Especially, two of the present authors completed the classification of the minimal ruled submanifolds in Minkowski space by considering two aspects whether rulings of the ruled submanifolds are non-degenerate or degenerate [14]. Also, in [13, 19], the ruled surfaces and ruled submanifolds of finite type were examined.

On the other hand, some studies were focused on submanifolds of Euclidean or pseudo-Euclidean space with the Gauss map of finite type. In [5], B.-Y. Chen and P. Piccini initiated the submanifolds in Euclidean space with finite type Gauss map so that they classified compact surfaces with 1-type Gauss map, that is, $\Delta G=\lambda(G+C)$, where C is a constant vector and $\lambda \in \mathbb{R}$. After that, quite a few of studies on ruled surfaces and ruled submanifolds with finite type Gauss map in Euclidean space or pseudo-Euclidean space have been studied and classified ($[10,11,12,15,16,17,18,20]$).

However, some surfaces including a helicoid have an interesting property concerning the Gauss map which looks like satisfying an eigenvalue problem. As a matter of fact, it is not: The helicoid in \mathbb{E}^{3} parameterized by

$$
x(u, v)=(u \cos v, u \sin v, a v), \quad a \neq 0
$$

has the Gauss map

$$
G=\frac{1}{\sqrt{a^{2}+u^{2}}}(a \sin v,-a \cos v, u) .
$$

Its Laplacian ΔG is given by

$$
\Delta G=\frac{2 a^{2}}{\left(a^{2}+u^{2}\right)^{2}} G
$$

On the other hand, the right (or circular) cone C_{a} with parametrization

$$
x(u, v)=(u \cos v, u \sin v, a u), \quad a \geq 0
$$

has the Gauss map

$$
G=\frac{1}{\sqrt{1+a^{2}}}(a \cos v, a \sin v,-1)
$$

which satisfies

$$
\Delta G=\frac{1}{u^{2}}\left(G+\left(0,0, \frac{1}{\sqrt{1+a^{2}}}\right)\right.
$$

(cf. $[6,7]$). The Gauss maps of examples above are similar to 1-type, but obviously different from the usual sense of 1-type Gauss map. Based on these, we define:

Definition 1.1. An oriented n-dimensional submanifold M of the Euclidean space \mathbb{E}^{m} is said to have pointwise 1-type Gauss map if it satisfies the condition

$$
\begin{equation*}
\Delta G=f(G+C) \tag{1}
\end{equation*}
$$

where f is a non-zero smooth function on M and C some constant vector. In particular, if C is zero, the Gauss map G is said to be of the first kind. Otherwise, it is said to be of the second kind ([3, 6, 7, 8, 21]).

In $[6,7]$, M . Choi et al. proved that a ruled surface in 3-dimensional Euclidean space with pointwise 1-type Gauss map is part of a plane, a circular cylinder, a helicoid, a cylinder over a plane curve of infinite type or a circular cone. And, in [8, 22], ruled surfaces in pseudo-Euclidean space with pointwise 1-type Gauss map were studied.

We now raise a question: Can we completely classify ruled submanifolds in Euclidean space with pointwise 1-type Gauss map of the first kind?

In this paper, we study the ruled submanifolds in Euclidean space with pointwise 1-type Gauss map of the first kind and construct the new examples of ruled submanifolds called generalized circular cylinders. As a result, we completely classify ruled submanifolds of Euclidean space with pointwise 1type Gauss map of the first kind.

All of geometric objects under consideration are smooth and submanifolds are assumed to be connected unless otherwise stated.

2. Preliminaries

Let $x: M \rightarrow \mathbb{E}^{m}$ be an isometric immersion of an n-dimensional Riemannian manifold M into \mathbb{E}^{m}. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a local coordinate system of M. For the components $g_{i j}$ of the Riemannian metric $\langle\cdot, \cdot\rangle$ on M induced from that of \mathbb{E}^{m}, we denote by $\left(g^{i j}\right)$ (respectively, \mathcal{G}) the inverse matrix (respectively, the determinant) of the matrix $\left(g_{i j}\right)$. Then the Laplace operator Δ on M is defined by

$$
\Delta=-\frac{1}{\sqrt{\mathcal{G}}} \sum_{i, j} \frac{\partial}{\partial x_{i}}\left(\sqrt{\mathcal{G}} g^{i j} \frac{\partial}{\partial x_{j}}\right) .
$$

We now choose an adapted local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ in \mathbb{E}^{m} such that $e_{1}, e_{2}, \ldots, e_{n}$ are tangent to M and $e_{n+1}, e_{n+2}, \ldots, e_{m}$ normal to M.

The Gauss map $G: M \rightarrow G(n, m) \subset \mathbb{E}^{N}\left(N={ }_{m} C_{n}\right), G(p)=\left(e_{1} \wedge e_{2} \wedge\right.$ $\left.\cdots \wedge e_{n}\right)(p)$ of M is a smooth map which carries a point p in M to an oriented n-plane in \mathbb{E}^{m} by the parallel translation of the tangent space of M at p to an n-plane passing through the origin in \mathbb{E}^{m}, where $G(n, m)$ is the Grassmannian manifold consisting of all oriented n-planes through the origin of \mathbb{E}^{m}.

An inner product $\ll \cdot \cdot \gg$ on $G(n, m) \subset \mathbb{E}^{N}$ is defined by

$$
\ll e_{i_{1}} \wedge \cdots \wedge e_{i_{n}}, e_{j_{1}} \wedge \cdots \wedge e_{j_{n}} \gg=\operatorname{det}\left(\left\langle e_{i_{l}}, e_{j_{k}}\right\rangle\right)
$$

where l, k run over the range $\{1,2, \ldots, n\}$. Then, $\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{n}} \mid 1 \leq i_{1}<\right.$ $\left.\cdots<i_{n} \leq m\right\}$ is an orthonormal basis of \mathbb{E}^{N}.

Now, we introduce the definition of a ruled submanifold M in \mathbb{E}^{m}. An $(r+1)$ dimensional submanifold M in \mathbb{E}^{m} is called a ruled submanifold if M is foliated by r-dimensional totally geodesic submanifolds $E(s, r)$ of \mathbb{E}^{m} along a regular curve $\alpha=\alpha(s)$ on M defined on an open interval I. Thus, a parametrization of a ruled submanifold M in \mathbb{E}^{m} can be given by

$$
x=x\left(s, t_{1}, t_{2}, \ldots, t_{r}\right)=\alpha(s)+\sum_{i=1}^{r} t_{i} e_{i}(s), \quad s \in I, t_{i} \in I_{i}
$$

where I_{i} 's are some open intervals for $i=1,2, \ldots, r$. For each $s, E(s, r)$ is open in $\operatorname{Span}\left\{e_{1}(s), e_{2}(s), \ldots, e_{r}(s)\right\}$, which is the linear span of linearly independent vector fields $e_{1}(s), e_{2}(s), \ldots, e_{r}(s)$ along the curve α. We call $E(s, r)$ the rulings and α the base curve of the ruled submanifold M. In particular, the ruled submanifold M is said to be cylindrical if $E(s, r)$ is parallel along α, or non-cylindrical otherwise.

Definition 2.1. An $(r+1)$-dimensional cylindrical ruled submanifold M is called a generalized circular cylinder $\Sigma_{a} \times \mathbb{E}^{r-1}$ if the base curve α is a circle and the generators of rulings are orthogonal to the plane containing the circle α, where $\Sigma_{a}=S^{1}(a) \times \mathbb{R}$ is a circular cylinder over a circle $S^{1}(a)$ of radius a in \mathbb{E}^{3}.

For later use, we need:
Lemma 2.1 (Lemma 2.2 in [1]). Given a curve α and orthonormal vector fields $e_{1}, e_{2}, \ldots, e_{n}$ along α in a Riemannian manifold \bar{M} with the Riemannian connection \bar{D}, we can always choose orthonormal vector fields f_{1}, \ldots, f_{n} along α such that:
(a) The sets of vectors $\left\{f_{j}(s): 1 \leq j \leq n\right\}$ and $\left\{e_{j}(s): 1 \leq j \leq n\right\}$ generate the same subspace of $T_{\alpha(s)} M$.
(b) The vector fields $(\bar{D} / d s) f_{i}(s)$ are normal to the subspace of $T_{\alpha(s)} \bar{M}$ spanned by $\left\{f_{j}(s): 1 \leq j \leq n\right\}$ for all $i=1,2, \ldots, n$.

3. Ruled submanifolds and Gauss map

Let M be an $(r+1)$-dimensional ruled submanifold in \mathbb{E}^{m}. Then, the base curve α can be chosen to be orthogonal to the rulings by taking an integral curve
of the field of normal directions to the rulings of M. Without loss of generality, we may assume that α is a unit speed curve, that is, $\left\langle\alpha^{\prime}(s), \alpha^{\prime}(s)\right\rangle=1$. From now on, the prime ' denotes $d / d s$ unless otherwise stated. By Lemma 2.1, we may choose orthonormal vector fields $e_{1}(s), \ldots, e_{r}(s)$ along α satisfying
(2) $\left\langle\alpha^{\prime}(s), e_{i}(s)\right\rangle=0,\left\langle e_{i}^{\prime}(s), e_{j}(s)\right\rangle=0$ for $s \in I$ and $i, j=1,2, \ldots, r$.

A parametrization of M is then obtained as

$$
\begin{equation*}
x=x\left(s, t_{1}, t_{2}, \ldots, t_{r}\right)=\alpha(s)+\sum_{i=1}^{r} t_{i} e_{i}(s), s \in I \tag{3}
\end{equation*}
$$

In this paper, we always assume that the parametrization (3) satisfies the condition (2). Then, M has the Gauss map

$$
G=\frac{1}{\left\|x_{s}\right\|} x_{s} \wedge x_{t_{1}} \wedge \cdots \wedge x_{t_{r}}
$$

or, equivalently

$$
\begin{equation*}
G=\frac{1}{q^{1 / 2}}(\Phi+\Psi), \quad \text { with } \quad \Psi=\sum_{i=1}^{r} t_{i} \Psi_{i} \tag{4}
\end{equation*}
$$

where q is the function of $s, t_{1}, t_{2}, \ldots, t_{r}$ defined by $q=\left\langle x_{s}, x_{s}\right\rangle, \Phi$ and Ψ_{i} $(i=1,2, \ldots, r)$ are vector fields along α given by

$$
\Phi=\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r} \quad \text { and } \quad \Psi_{i}=e_{i}^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}
$$

Now, we separate the cases into two typical types of ruled submanifolds which are cylindrical or non-cylindrical. First of all, we consider the following lemma.

Lemma 3.1. Suppose that a unit speed curve $\alpha(s)$ in an m-dimensional Euclidean space \mathbb{E}^{m} defined on an interval I satisfies

$$
\begin{equation*}
\alpha^{\prime \prime \prime}(s)=f(s)\left(\alpha^{\prime}(s)+C\right), \tag{5}
\end{equation*}
$$

where f is a function and C a constant vector in \mathbb{E}^{m}. Then, the curve α lies in a 3-dimensional Euclidean space \mathbb{E}^{3}. In particular, if the constant vector C is zero, we see that α is a plane curve.

Proof. We fix a point $s_{0} \in I$. Let us denote by V the linear span of $\left\{\alpha^{\prime}\left(s_{0}\right)\right.$, $\left.\alpha^{\prime \prime}\left(s_{0}\right), C\right\}$. Then V is a at most 3 -dimensional space in \mathbb{E}^{m}.

For any vector a in the orthogonal complement V^{\perp} of V, we consider the function $h_{a}(s)$ defined by $h_{a}(s)=\left\langle a, \alpha^{\prime}(s)\right\rangle$. Then, it follows from (5) that

$$
\begin{equation*}
h_{a}^{\prime \prime}(s)=f(s) h_{a}(s) \tag{6}
\end{equation*}
$$

Hence, the function $h_{a}(s)$ is a solution of a second order linear differential equation with initial condition $h_{a}\left(s_{0}\right)=h_{a}^{\prime}\left(s_{0}\right)=0$. This shows that the function $h_{a}(s)$ vanishes identically on the interval I. Thus, we have $\alpha^{\prime}(s) \in V$ for all $s \in I$, which shows that the curve α lies in a parallel displacement $\alpha\left(s_{0}\right)+V$ of the space V. This completes the proof.

Theorem 3.2. A cylindrical ruled submanifold M in \mathbb{E}^{m} has pointwise 1-type Gauss map of the first kind if and only if M is an open part of a generalized circular cylinder.
Proof. Let M be an $(r+1)$-dimensional cylindrical ruled submanifold in \mathbb{E}^{m}, which is parameterized by (3). We may assume that $e_{1}, e_{2}, \ldots, e_{r}$ generating the rulings are constant vectors.

Then, $q \equiv 1$ and the Laplace operator Δ of M is expressed by

$$
\Delta=-\frac{\partial^{2}}{\partial s^{2}}-\sum_{i=1}^{r} \frac{\partial^{2}}{\partial t_{i}^{2}}
$$

and the Gauss map G of M is given by

$$
G=\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}
$$

If we denote by Δ^{\prime} the Laplace operator of α, that is $\Delta^{\prime}=-\frac{\partial^{2}}{\partial s^{2}}$, we have the Laplacian ΔG of the Gauss map

$$
\Delta G=\Delta^{\prime} \alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}
$$

We now suppose that the Gauss map G is of pointwise 1-type of the first kind, that is $\Delta G=f G$ for some function f. Then the condition $\Delta G=f G$ is rewritten as

$$
\Delta^{\prime} \alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}=f \alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}
$$

Therefore we have

$$
\Delta^{\prime} \alpha^{\prime}=f \alpha^{\prime}
$$

which shows that the function f depends only on s. It follows that

$$
\begin{equation*}
-\alpha^{\prime \prime \prime}(s)=f(s) \alpha^{\prime}(s) \tag{7}
\end{equation*}
$$

Then, Lemma 3.1 implies that α is a plane curve and the function f is given by $f=\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle$, which is the squared curvature function of α. By considering the Frenet formula for α satisfying (7), we easily see that the curvature of the base curve is non-zero constant. Thus, the plane curve α is part of a circle. Therefore, M is an open part of a generalized circular cylinder. The converse is straightforward.

Next, we deal with the case that M is non-cylindrical. Let M be an $(r+1)$ dimensional non-cylindrical ruled submanifold parameterized by (3) in \mathbb{E}^{m}. Then, we have

$$
x_{s}=\alpha^{\prime}(s)+\sum_{j=1}^{r} t_{j} e_{j}^{\prime}(s), \quad x_{t_{i}}=e_{i}(s)
$$

for $s \in I$ and $i=1,2, \ldots, r$. The aforementioned function q is given by

$$
\begin{equation*}
q=\left\langle x_{s}, x_{s}\right\rangle=1+\sum_{i=1}^{r} 2 u_{i} t_{i}+\sum_{i, j=1}^{r} w_{i j} t_{i} t_{j}, \tag{8}
\end{equation*}
$$

where $u_{i}=\left\langle\alpha^{\prime}, e_{i}^{\prime}\right\rangle, w_{i j}=\left\langle e_{i}^{\prime}, e_{j}^{\prime}\right\rangle, i, j=1, \ldots, r$. Note that q is a polynomial in $t=\left(t_{1}, \ldots, t_{r}\right)$ with functions in s as coefficients and the degree of q is 2 . Then, the Laplace operator Δ of M is obtained by

$$
\begin{equation*}
\Delta=\frac{1}{2 q^{2}} \frac{\partial q}{\partial s} \frac{\partial}{\partial s}-\frac{1}{q} \frac{\partial^{2}}{\partial s^{2}}-\frac{1}{2 q} \sum_{i=1}^{r} \frac{\partial q}{\partial t_{i}} \frac{\partial}{\partial t_{i}}-\sum_{i=1}^{r} \frac{\partial^{2}}{\partial t_{i}^{2}} \tag{9}
\end{equation*}
$$

Proposition 3.3. Let M be an $(r+1)$-dimensional non-cylindrical ruled submanifold of \mathbb{E}^{m} parameterized by (3) satisfying (2). Suppose some generators $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{k}}(1 \leq k<r)$ of the rulings are constant vectors along α. Then, M has pointwise 1-type Gauss map if and only if the ruled submanifold M_{1} has pointwise 1-type Gauss map, where M_{1} is the non-cylindrical ruled submanifold over the base curve α with the rulings generated by e_{j} for $j \neq j_{1}, j_{2}, \ldots, j_{k}$.

Proof. Suppose that M is an $(r+1)$-dimensional non-cylindrical ruled submanifold of \mathbb{E}^{m} parameterized by (3) with $e_{j_{i}}^{\prime}=\mathbf{0}$ for all $i=1,2, \ldots, k$. By rearranging the indices, we may assume that j_{1}, \ldots, j_{k} are $r-k+1, \ldots, r$. Also, M can be expressed as $M=M_{1} \times \mathbb{E}^{k}$, where M_{1} is parameterized by

$$
\begin{equation*}
x=x\left(s, t_{1}, t_{2}, \cdots, t_{r-k}\right)=\alpha(s)+\sum_{i=1}^{r-k} t_{i} e_{i}(s) . \tag{10}
\end{equation*}
$$

It is easy to show that the Gauss map G on M satisfies

$$
\begin{equation*}
G=G_{1} \wedge C_{0} \quad \text { and } \quad \Delta G=\left(\Delta_{1} G_{1}\right) \wedge C_{0} \tag{11}
\end{equation*}
$$

where Δ_{1} is the Laplace operator on M_{1}, G_{1} the Gauss map on M_{1} and C_{0} the constant vector field defined by $C_{0}=e_{r-k+1} \wedge \cdots \wedge e_{r}$.

Choose orthonormal vector fields e_{r+1}, \ldots, e_{m} of the normal space of M along α. If we put $e_{0}(s)=\alpha^{\prime}(s)$, then $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{r+1}} \mid 0 \leq i_{1}<\cdots<i_{r+1} \leq m\right\}$ is an orthonormal basis of E^{N} which contains the Grassmannian manifold $G(r+1, m)$.

Suppose that M has pointwise 1-type Gauss map satisfying (1). Let us denote by $V=E^{k} \subset E^{m}$ the space spanned by the constant vectors e_{r-k+1}, \ldots, e_{r}. Then, using the basis elements of $G(r+1, m)$ the constant vector C is uniquely decomposed as follows:

$$
C=C_{1} \wedge C_{0}+D
$$

where C_{1} and D are constant vectors such that each component of C_{1} is orthogonal to V and each term of D does not contain all of e_{r-k+1}, \ldots, e_{r}.

If we compare (1) and (11) and take into account of the linearly independency of the basis elements of $G(r+1, m)$, we see that

$$
D=\mathbf{0}
$$

and

$$
\Delta G=\left(\Delta_{1} G_{1}\right) \wedge C_{0}=f\left(G_{1}+C_{1}\right) \wedge C_{0}
$$

from which, we see that the function f depends on $s, t_{1}, t_{2}, \ldots, t_{r-k}$. This shows that the Gauss map G_{1} of M_{1} is of pointwise 1-type satisfying $\Delta_{1} G_{1}=$ $f\left(G_{1}+C_{1}\right)$.

The converse is straightforward.

Based on Proposition 3.3, without loss of generality, we may assume that $e_{j}^{\prime}(s) \neq 0$ for all $j=1,2, \ldots, r$ on the domain I of α. From now on, for a polynomial $F(t)$ in $t=\left(t_{1}, t_{2}, \ldots, t_{r}\right)$, deg $F(t)$ denotes the degree of $F(t)$ in $t=\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ unless otherwise stated.

Now, we suppose that M has pointwise 1-type Gauss map of the first kind, i.e., $\Delta G=f G$. Using (4) and (9), this condition is written as

$$
\begin{align*}
& \left(\frac{\partial q}{\partial s}\right)^{2}\left(\Phi+\sum_{j=1}^{r} \Psi_{j} t_{j}\right)-\frac{3}{2} q \frac{\partial q}{\partial s}\left(\Phi^{\prime}+\sum_{j=1}^{r} \Psi_{j}^{\prime} t_{j}\right)-\frac{1}{2} q \frac{\partial^{2} q}{\partial s^{2}}\left(\Phi+\sum_{j=1}^{r} \Psi_{j} t_{j}\right) \\
& +q^{2}\left(\Phi^{\prime \prime}+\sum_{j=1}^{r} \Psi_{j}^{\prime \prime} t_{j}\right)+\frac{1}{2} q \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right)^{2}\left(\Phi+\sum_{j=1}^{r} \Psi_{j} t_{j}\right)-\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial q}{\partial t_{i}} \Psi_{i} \tag{12}\\
& -\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial^{2} q}{\partial t_{i}^{2}}\left(\Phi+\sum_{j=1}^{r} \Psi_{j} t_{j}\right)+f q^{3}\left(\Phi+\sum_{j=1}^{r} \Psi_{j} t_{j}\right)=\mathbf{0}
\end{align*}
$$

for some non-zero function f, where $\mathbf{0}$ denotes zero vector. For the vector fields $\Phi=\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}$ and $\Psi_{j}=e_{j}^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{r}(j=1,2, \ldots, r)$, we put

$$
\begin{aligned}
& \ll \Phi, \Phi^{\prime \prime} \gg=-\mu+2 \sum_{k=1}^{r} u_{k}^{2}-\sum_{k=1}^{r} w_{k k}, \\
& \ll \Phi, \Psi_{i}^{\prime \prime} \gg=\tilde{y}_{i}+2 \sum_{k=1}^{r} u_{k} w_{i k}-\sum_{k=1}^{r} u_{i} w_{k k}, \\
& \ll \Psi_{j}, \Phi^{\prime \prime} \gg=p_{j}+2 \sum_{k=1}^{r} u_{k} w_{j k}-\sum_{k=1}^{r} u_{j} w_{k k}, \\
& \ll \Psi_{j}, \Psi_{i}^{\prime \prime} \gg=\sigma_{j i}+2 \sum_{k=1}^{r} w_{j k} w_{i k}-\sum_{k=1}^{r} w_{j i} w_{k k}, \\
& \ll \Phi, \Psi_{i} \gg=u_{i}, \quad \ll \Phi, \Psi_{i}^{\prime} \gg=\tilde{x}_{i}, \\
& \ll \Psi_{j}, \Phi^{\prime} \gg=\tilde{z}_{j}, \ll \Psi_{j}, \Psi_{i} \gg=w_{j i}, \ll \Psi_{j}, \Psi_{i}^{\prime} \gg=\xi_{j i},
\end{aligned}
$$

where $\mu=\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle, \tilde{x}_{i}=\left\langle\alpha^{\prime}, e_{i}^{\prime \prime}\right\rangle, \tilde{y}_{i}=\left\langle\alpha^{\prime}, e_{i}^{\prime \prime \prime}\right\rangle, \tilde{z}_{i}=\left\langle\alpha^{\prime \prime}, e_{i}^{\prime}\right\rangle, p_{i}=\left\langle\alpha^{\prime \prime \prime}, e_{i}^{\prime}\right\rangle$, $\xi_{i j}=\left\langle e_{i}^{\prime}, e_{j}^{\prime \prime}\right\rangle$ and $\sigma_{i j}=\left\langle e_{i}^{\prime}, e_{j}^{\prime \prime \prime}\right\rangle$ for $i, j=1,2, \ldots, r$. We easily see that

$$
\begin{equation*}
u_{i}^{\prime}(s)=\tilde{x}_{i}(s)+\tilde{z}_{i}(s) \text { and } w_{i j}^{\prime}(s)=\xi_{i j}(s)+\xi_{j i}(s) . \tag{13}
\end{equation*}
$$

If we take the inner product with the vector Φ to equation (12), then we obtain

$$
\begin{aligned}
& \left(\frac{\partial q}{\partial s}\right)^{2}\left(1+\sum_{j=1}^{r} t_{j} u_{j}\right)-\frac{3}{2} q \frac{\partial q}{\partial s}\left(\sum_{j=1}^{r} t_{j} \tilde{x}_{j}\right)-\frac{1}{2} q \frac{\partial^{2} q}{\partial s^{2}}\left(1+\sum_{j=1}^{r} t_{j} u_{j}\right) \\
& +q^{2}\left(\phi+\sum_{j=1}^{r} t_{j} \varphi_{j}\right)+\frac{1}{2} q \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right)^{2}\left(1+\sum_{j=1}^{r} t_{j} u_{j}\right)-\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial q}{\partial t_{i}} u_{i} \\
& -\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial^{2} q}{\partial t_{i}^{2}}\left(1+\sum_{j=1}^{r} t_{j} u_{j}\right)+f q^{3}\left(1+\sum_{j=1}^{r} t_{j} u_{j}\right)=0
\end{aligned}
$$

where we put

$$
\phi=\ll \Phi, \Phi^{\prime \prime} \gg \quad \text { and } \quad \varphi_{i}=\ll \Phi, \Psi_{i}^{\prime \prime} \gg .
$$

By putting

$$
\begin{align*}
P(t)= & \left(\frac{\partial q}{\partial s}\right)^{2}\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)-\frac{3}{2} q \frac{\partial q}{\partial s}\left(\sum_{j=1}^{r} \tilde{x}_{j} t_{j}\right)-\frac{1}{2} q \frac{\partial^{2} q}{\partial s^{2}}\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right) \\
& +q^{2}\left(\phi+\sum_{j=1}^{r} \varphi_{j} t_{j}\right)+\frac{1}{2} q \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right)^{2}\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right) \tag{14}\\
& -\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial q}{\partial t_{i}} u_{i}-\frac{1}{2} q^{2} \sum_{i=1}^{r} \frac{\partial^{2} q}{\partial t_{i}^{2}}\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)
\end{align*}
$$

we may assume that the function f is the rational function in t with functions in s as coefficients of the form

$$
\begin{equation*}
f=-\frac{P(t)}{q^{3}\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)} \tag{15}
\end{equation*}
$$

Substituting (15) into (12) and multiplying $\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)$ with the equation obtained in such a way, we get

$$
\begin{align*}
& -\frac{3}{2} q\left(\frac{\partial q}{\partial s}\right)\left(\Phi^{\prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime}\right)\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)+\frac{3}{2} q\left(\frac{\partial q}{\partial s}\right)\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\sum_{k=1}^{r} \tilde{x}_{k} t_{k}\right) \tag{16}\\
& +q^{2}\left(\Phi^{\prime \prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime \prime}\right)\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)-q^{2}\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\phi+\sum_{k=1}^{r} \varphi_{k} t_{k}\right) \\
& -\frac{1}{2} q^{2} \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right) \Psi_{i}\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)+\frac{1}{2} q^{2} \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right) u_{i}\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)=\mathbf{0} .
\end{align*}
$$

We rewrite (16) in the following form

$$
\begin{equation*}
-\frac{3}{2}\left(\frac{\partial q}{\partial s}\right) R(t)=q Q(t) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
R(t)=\left(\Phi^{\prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime}\right)\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)-\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\sum_{k=1}^{r} \tilde{x}_{k} t_{k}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{aligned}
Q(t)= & -\left(\Phi^{\prime \prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime \prime}\right)\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)+\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\phi+\sum_{k=1}^{r} \varphi_{k} t_{k}\right) \\
& +\frac{1}{2} \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right) \Psi_{i}\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)-\frac{1}{2} \sum_{i=1}^{r}\left(\frac{\partial q}{\partial t_{i}}\right) u_{i}\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right) .
\end{aligned}
$$

Suppose that $\frac{\partial q}{\partial s} \neq 0$ on some open interval I_{1}. We show that it is a contradiction no matter what the function q is of the form either $q=\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$ or $q \neq\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$. In order to do that, we need the following lemma.

Lemma 3.4. Let M be an $(r+1)$-dimensional non-cylindrical ruled submanifold parameterized by (3) in \mathbb{E}^{m} with pointwise 1-type Gauss map of the first kind. Suppose that $\frac{\partial q}{\partial s} \neq 0$ on some open interval I_{1}. If $q(t) \neq\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$, then $R(t)$ in (18) has to be expressed as

$$
\begin{equation*}
R(t)=q(t) B(s) \tag{19}
\end{equation*}
$$

for some vector field $B(s)$ along α.
Proof. We consider the following two cases according to q and $\frac{\partial q}{\partial s}$ whether they are relatively prime or not. First, suppose that q and $\frac{\partial q}{\partial s}$ are relatively prime. It is obvious that (19) holds.

Next, suppose that q and $\frac{\partial q}{\partial s}$ are not relatively prime. Without loss of generality, we may assume that $q=\left(1+\sum_{i=1}^{r} a_{i}(s) t_{i}\right)\left(1+\sum_{i=1}^{r} b_{i}(s) t_{i}\right)$ and $\frac{\partial q}{\partial s}=\left(1+\sum_{i=1}^{r} a_{i}(s) t_{i}\right)\left(\sum_{j=1}^{r} c_{j} t_{j}\right)$ for some functions $a_{i}(s), b_{i}(s), c_{i}(s)$ of s and $i=1,2, \ldots, r$. Since $q=1+\sum_{i} 2 u_{i} t_{i}+\sum_{i, j} w_{i j} t_{i} t_{j}$ and $\frac{\partial q}{\partial s}=\sum_{i} 2 u_{i}^{\prime} t_{i}+$ $\sum_{i, j} w_{i j}^{\prime} t_{i} t_{j}$, we can see that

$$
\begin{equation*}
a_{i}+b_{i}=2 u_{i} \quad c_{i}=2 u_{i}^{\prime} \quad \text { and } \quad w_{i j}=a_{i}\left(2 u_{j}-a_{j}\right) . \tag{20}
\end{equation*}
$$

Since $w_{i j}=w_{j i}$ for all i, j, we have

$$
\begin{equation*}
a_{i} u_{j}=a_{j} u_{i} \tag{21}
\end{equation*}
$$

for all $i, j=1,2, \ldots, r$. Since a_{j}, b_{j}, c_{j} are not all vanishing functions for all $j=1,2, \ldots, r$, there exists some j_{0} such that $a_{j_{0}} \neq 0$. Together with (20) and (21), we see that $a_{i}=0$ if and only if $u_{i}=0$ and $b_{i}=0$ for all $i=1,2 \ldots, r$.

On the other hand, from (17), $R(t)$ and $Q(t)$ must be of the form

$$
\begin{align*}
& R(t)=\left(1+\sum_{i=1}^{r}\left(2 u_{i}-a_{i}\right) t_{i}\right)\left(\mathbf{a}(s)+\sum_{j=1}^{r} \mathbf{b}_{j}(s) t_{j}\right) \\
& Q(t)=-\frac{3}{2}\left(\sum_{j=1}^{r} 2 u_{j}^{\prime} t_{j}\right)\left(\mathbf{a}(s)+\sum_{j=1}^{r} \mathbf{b}_{j}(s) t_{j}\right) \tag{22}
\end{align*}
$$

for some vector fields $\mathbf{a}(s)$ and $\mathbf{b}_{j}(s)$ along α for $j=1,2, \ldots, r$. By comparing the constant terms with respect to t in (18) and (22), we can see that

$$
\begin{equation*}
\mathbf{a}(s)=\Phi^{\prime}(s) \tag{23}
\end{equation*}
$$

Putting (23) into (22) and then, considering the coefficients of terms containing $t_{j_{0}}$ in (18), we get

$$
\begin{equation*}
\mathbf{b}_{j_{0}}(s)=\left(a_{j_{0}}-u_{j_{0}}\right) \Phi^{\prime}+\Psi_{j_{0}}^{\prime}-\tilde{x}_{j_{0}} \Phi \tag{24}
\end{equation*}
$$

Now, we have two equations to express $Q(t)$. With the aid of (23) and (24), comparing the coefficients of terms containing $t_{j_{0}}^{0}, t_{j_{0}}^{1}, t_{j_{0}}^{2}$ of these equations, we have the following equations:

$$
\begin{align*}
& -\Phi^{\prime \prime}+\phi \Phi+\sum_{i=1}^{r} u_{i} \Psi_{i}-\sum_{i=1}^{r} u_{i}^{2} \Phi=0 \tag{25}\\
& -u_{j_{0}} \Phi^{\prime \prime}-\Psi_{j_{0}}^{\prime \prime}+\varphi_{j_{0}} \Phi+\phi \Psi_{j_{0}}+\left(\sum_{i=1}^{r} u_{i} \Psi_{i}\right) u_{j_{0}}+\sum_{i=1}^{r} w_{i j_{0}} \Psi_{i} \\
& -\left(\sum_{i=1}^{r} u_{i}^{2}\right) \Psi_{j_{0}}-\left(\sum_{i=1}^{r} u_{i} w_{i j_{0}}\right) \Phi=-3 u_{j_{0}}^{\prime} \Phi^{\prime} \tag{26}\\
& \quad-u_{j_{0}} \Psi_{j_{0}}^{\prime \prime}+\varphi_{j_{0}} \Psi_{j_{0}}+\left(\sum_{i=1}^{r} w_{i j_{0}} \Psi_{i}\right) u_{j_{0}}-\left(\sum_{i=1}^{r} u_{i} w_{i j_{0}}\right) \Psi_{j_{0}} \tag{27}\\
& =-3 u_{j_{0}}^{\prime}\left(\left(a_{j_{0}}-u_{j_{0}}\right) \Phi^{\prime}+\Psi_{j_{0}}^{\prime}-\tilde{x}_{j_{0}} \Phi\right) .
\end{align*}
$$

Substituting (25) into (26), we obtain

$$
\begin{align*}
& -u_{j_{0}} \phi \Phi+\left(\sum_{i=1}^{r} u_{i}^{2}\right) u_{j_{0}} \Phi-\Psi_{j_{0}}^{\prime \prime}+\varphi_{j_{0}} \Phi+\phi \Psi_{j_{0}}+\sum_{i=1}^{r} w_{i j_{0}} \Psi_{i} \\
& -\left(\sum_{i=1}^{r} u_{i}^{2}\right) \Psi_{j_{0}}-\left(\sum_{i=1}^{r} u_{i} w_{i j_{0}}\right) \Phi=-3 u_{j_{0}}^{\prime} \Phi^{\prime} \tag{28}
\end{align*}
$$

Multiplying (28) with $u_{j_{0}}$ and putting the equation obtained in such a way into (27), we have

$$
\begin{equation*}
\left(u_{j_{0}} \phi-\left(\sum_{i=1}^{r} u_{i}^{2}\right) u_{j_{0}}-\varphi_{j_{0}}+\sum_{i=1}^{r} u_{i} w_{i j_{0}}\right)\left(\Psi_{j_{0}}-u_{j_{0}} \Phi\right) \tag{29}
\end{equation*}
$$

$$
=-3 u_{j_{0}}^{\prime}\left(a_{j_{0}} \Phi^{\prime}+\Psi_{j_{0}}^{\prime}-\tilde{x}_{j_{0}} \Phi\right)
$$

If we apply Lemma 2.1 to the normal space $T_{\alpha(s)}^{\perp} M$ of M, then there exists an orthonormal frame $\left\{e_{a}\right\}_{a=r+1}^{m-1}$ of the normal space $T_{\alpha(s)}^{\perp} M$ satisfying

$$
\left\langle e_{a}^{\prime}(s), e_{b}(s)\right\rangle=0
$$

for all $a, b=r+1, \ldots, m-1$. Then, we can put

$$
\begin{align*}
\alpha^{\prime \prime} & =-\sum_{i=1}^{r} u_{i} e_{i}-\sum_{a=r+1}^{m-1} u_{a} e_{a}, \\
e_{i}^{\prime} & =u_{i} \alpha^{\prime}+\sum_{a=r+1}^{m-1}\left\langle e_{i}^{\prime}, e_{a}\right\rangle e_{a}, \tag{30}
\end{align*}
$$

where $u_{a}=\left\langle\alpha^{\prime}, e_{a}^{\prime}\right\rangle$ for $a=r+1, \ldots, m-1$. Together with the definitions of Φ, Ψ_{j} and (30), by straightforward computations, equation (29) can be rewritten as
(31) $\left(u_{j_{0}} \phi-\left(\sum_{i=1}^{r} u_{i}^{2}\right) u_{j_{0}}-\varphi_{j_{0}}+\sum_{i=1}^{r} u_{i} w_{i j_{0}}\right)\left(\Psi_{j_{0}}-u_{j_{0}} \Phi\right)$
$=-3 u_{j_{0}}^{\prime}\left\{\sum_{a=r+1}^{m-1}\left(-a_{j_{0}} u_{a}+\left\langle e_{j_{0}}^{\prime \prime}, e_{a}\right\rangle\right) \xi_{a}\right.$
$+\sum_{i=1}^{r} \sum_{a=r+1}^{m-1}\left\langle\left(a_{j_{0}}+u_{j_{0}}\right) e_{i}^{\prime}-u_{i} e_{j_{0}}^{\prime}, e_{a}\right\rangle \eta_{i a}$
$\left.+\sum_{i=1}^{r} \sum_{a, b=r+1}^{m-1}\left\langle e_{j_{0}}^{\prime}, e_{a}\right\rangle\left\langle e_{i}^{\prime}, e_{b}\right\rangle e_{a} \wedge e_{1} \wedge \cdots \wedge e_{i-1} \wedge e_{b} \wedge e_{i+1} \wedge \cdots \wedge e_{r}\right\}$,
where $\xi_{a}=e_{a} \wedge e_{1} \wedge e_{2} \wedge \cdots \wedge e_{r}$ and $\eta_{i a}=\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{i-1} \wedge e_{a} \wedge e_{i+1} \wedge \cdots \wedge e_{r}$ for all $a=r+1, \ldots, m-1$. Note that the vectors $\eta_{i a}=\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{i-1} \wedge e_{a} \wedge e_{i+1} \wedge$ $\cdots \wedge e_{r}$ are orthogonal to all of other vectors in (31) for all $a=r+1, \ldots, m-1$. This implies that for all $i=1,2, \ldots, r$ and $a=r+1, \ldots, m-1$,

$$
u_{j_{0}}^{\prime}\left\langle\left(a_{j_{0}}+u_{j_{0}}\right) e_{i}^{\prime}-u_{i} e_{j_{0}}^{\prime}, e_{a}\right\rangle=0
$$

Suppose that $u_{i}^{\prime}=0$ for all $i=1,2, \ldots, r$ on $I_{2} \subset I_{1}$. Then, $c_{i}=0$ on I_{2} and hence $\frac{\partial q}{\partial s}=0$ on I_{2}, which is a contradiction. Thus, we may assume that $u_{j_{0}}^{\prime} \neq 0$. Therefore, we get

$$
\begin{equation*}
\left(a_{j_{0}}+u_{j_{0}}\right) e_{i}^{\prime}-u_{i} e_{j_{0}}^{\prime}=a_{j_{0}} u_{i} \alpha^{\prime} \tag{32}
\end{equation*}
$$

for all $i=1,2, \ldots, r$ and $a=r+1, \ldots, m-1$. Taking the inner product e_{k}^{\prime} to the both sides of (32) for some $k \in\{1,2, \ldots, r\}$, we get

$$
\begin{equation*}
\left(a_{j_{0}}+u_{j_{0}}\right) w_{i k}-u_{i} w_{j_{0} k}=a_{j_{0}} u_{i} u_{k} \tag{33}
\end{equation*}
$$

for all $i, k=1,2, \ldots, r$.

Since for any $i, j, w_{i j}=a_{i}\left(2 u_{j}-a_{j}\right),(33)$ implies

$$
\begin{equation*}
2 a_{i} a_{j_{0}} u_{k}-a_{i} a_{j_{0}} a_{k}+2 a_{i} u_{j_{0}} u_{k}-a_{i} a_{k} u_{j_{0}}-3 a_{j_{0}} u_{i} u_{k}+a_{j_{0}} a_{k} u_{i}=0 \tag{34}
\end{equation*}
$$

for all $i, k=1,2, \ldots, r$. Making use of (21), we see that (34) can be simplified as

$$
a_{i} a_{j_{0}} u_{k}-a_{i} a_{j_{0}} a_{k}-a_{j_{0}} u_{i} u_{k}+a_{j_{0}} a_{k} u_{i}=0
$$

for all $i, k=1,2, \ldots, r$. Since $a_{j_{0}} \neq 0$, we have

$$
a_{i} u_{k}-a_{i} a_{k}-u_{i} u_{k}+a_{k} u_{i}=0
$$

which implies

$$
\left(a_{i}-u_{i}\right)\left(a_{k}-u_{k}\right)=0
$$

for all $i, k=1,2, \ldots, r$. Thus, we can see that $a_{j}=u_{j}$ for all $j=1,2, \ldots, r$. Hence, $w_{i j}=u_{i} u_{j}$ for all $i, j=1,2, \ldots, r$ by virtue of (21), which leads to a contradiction to our assumption: $q(t) \neq\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$. Therefore, we conclude that q and $\frac{\partial q}{\partial s}$ are relatively prime. This completes the proof.

We now prove $\frac{\partial q}{\partial s}=0$ by considering the following two cases depending on the function q which can be expressed as $q(t) \neq\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$ or $q(t)=$ $\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$.
Case 1. Suppose that $\frac{\partial q}{\partial s} \neq 0$ on an open interval I_{1}. Let $q(t) \neq(1+$ $\left.\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$. By Lemma 3.4, we may put $R(t)$ by

$$
R(t)=q(t) B(s)
$$

for some vector field $B(s)$ along α.

$$
\begin{align*}
& \left(\Phi^{\prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime}\right)\left(1+\sum_{k=1}^{r} u_{k} t_{k}\right)-\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\sum_{k=1}^{r} \tilde{x}_{k} t_{k}\right) \tag{35}\\
= & B(s)\left(1+\sum_{i=1}^{r} 2 u_{i} t_{i}+\sum_{j, i=1}^{r} w_{i j} t_{i} t_{j}\right) .
\end{align*}
$$

Considering the constant terms in (35) with respect to t, we see that

$$
B(s)=\Phi^{\prime}(s)
$$

Next, comparing the coefficients of the terms containing t_{i} and $t_{i} t_{j}$ for any i and j in (35) $(i, j=1,2, \ldots, r)$, we have the following:

$$
\begin{equation*}
\Psi_{i}^{\prime}=u_{i} \Phi^{\prime}+\tilde{x}_{i} \Phi, \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
u_{i} \Psi_{j}^{\prime}+u_{j} \Psi_{i}^{\prime}-\tilde{x}_{i} \Psi_{j}-\tilde{x}_{j} \Psi_{i}=2 w_{i j} \Phi^{\prime} \tag{37}
\end{equation*}
$$

Taking the inner product with Ψ_{j} to the both sides of (36), we obtain

$$
\xi_{j i}=u_{i} \tilde{z}_{j}+\tilde{x}_{i} u_{j} .
$$

So we get

$$
\begin{align*}
\xi_{j i}+\xi_{i j} & =\left(u_{i} \tilde{z}_{j}+\tilde{x}_{i} u_{j}\right)+\left(u_{j} \tilde{z}_{i}+\tilde{x}_{j} u_{i}\right) \\
& =u_{i}\left(\tilde{x}_{j}+\tilde{z}_{j}\right)+u_{j}\left(\tilde{x}_{i}+\tilde{z}_{i}\right) . \tag{38}
\end{align*}
$$

Due to (13), (38) yields

$$
w_{i j}^{\prime}=u_{i} u_{j}^{\prime}+u_{j} u_{i}^{\prime}
$$

for $i, j=1,2, \ldots, r$. Therefore, we have

$$
\begin{equation*}
w_{i j}=u_{i} u_{j}+c_{i j} \tag{39}
\end{equation*}
$$

for some constants $c_{i j}$ and $i, j=1,2, \ldots, r$.
Let $e_{r+1}, e_{r+2}, \ldots, e_{m-1}$ be the orthogonal normal vector fields to M along α. If we put

$$
e_{i}^{\prime}=u_{i} \alpha^{\prime}+\sum_{a=r+1}^{m-1}\left\langle e_{i}^{\prime}, e_{a}\right\rangle e_{a}
$$

then the constants $c_{i j}$ are given by

$$
c_{i j}=\sum_{a=r+1}^{m-1}\left\langle e_{i}^{\prime}, e_{a}\right\rangle\left\langle e_{j}^{\prime}, e_{a}\right\rangle
$$

for $i, j=1,2, \ldots, r$.
Putting (39) and (36) into (37), we obtain

$$
\begin{equation*}
2 c_{i j} \Phi^{\prime}=u_{i} \tilde{x}_{j} \Phi+u_{j} \tilde{x}_{i} \Phi-\tilde{x}_{i} \Psi_{j}-\tilde{x}_{j} \Psi_{i} . \tag{40}
\end{equation*}
$$

Again, taking the inner product with Ψ_{k} to (40) for $k=1,2, \ldots, r$, we have

$$
\begin{equation*}
2 c_{i j} \tilde{z}_{k}=u_{i} \tilde{x}_{j} u_{k}+u_{j} \tilde{x}_{i} u_{k}-\tilde{x}_{i} w_{j k}-\tilde{x}_{j} w_{i k} \tag{41}
\end{equation*}
$$

for $i, j, k=1,2, \ldots, r$. By (39) and (41), we get

$$
\begin{equation*}
2 c_{i j} \tilde{z}_{k}=-c_{j k} \tilde{x}_{i}-c_{i k} \tilde{x}_{j} . \tag{42}
\end{equation*}
$$

Because the function $q \neq\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$, there must be a non-zero constant $c_{i k}$ defined in (39) for some i and k. If $c_{i k} \neq 0$, we can see easily that $c_{i i} \neq 0$ and $c_{k k} \neq 0$. Then, by replacing j, k with i in (42), for the case $c_{i i} \neq 0$, we obtain

$$
u_{i}^{\prime}=\tilde{x}_{i}+\tilde{z}_{i}=0 .
$$

Now, we consider the case that $c_{i k}=0$ for some i, k. If $c_{i i} \neq 0$ and $c_{k k} \neq 0$, we see easily that u_{i} and u_{k} are constant. Note that if $c_{i_{0} i_{0}}=0$ for some i_{0}, then $c_{i_{0} k}=0$ for all $k=1,2, \ldots, r$. Indeed, since $c_{i_{0} i_{0}}=0, w_{i_{0} i_{0}}=u_{i_{0}}^{2}$ which implies $e_{i_{0}}^{\prime}=u_{i_{0}} \alpha^{\prime}$. Then, by definition of the functions, we have $w_{i_{0} k}=u_{i_{0}} u_{k}$ for all $k=1,2, \ldots, r$.

So we consider the set $\Lambda=\left\{i \mid c_{i i}=0\right\} \subset\{1,2, \ldots, r\}$. For $i \in \Lambda, w_{i k}=u_{i} u_{k}$ for all $k=1,2, \ldots, r$. Then, the function $q=1+\sum 2 u_{i} t_{i}+\sum w_{i j} t_{i} t_{j}$ can be rewritten as

$$
q=\left(1+\sum_{i \in \Lambda} u_{i} t_{i}\right)^{2}+2 \sum_{i \notin \Lambda} u_{i} t_{i}+2 \sum_{i \in \Lambda}\left(\sum_{k \notin \Lambda} w_{i k} t_{i} t_{k}\right)+\sum_{k, h \notin \Lambda} w_{k h} t_{k} t_{h} .
$$

Since u_{k} and $w_{k h}$ are constant for $k, h \notin \Lambda$,

$$
\begin{aligned}
\frac{\partial q}{\partial s} & =2\left(1+\sum_{i \in \Lambda} u_{i} t_{i}\right)\left(\sum_{i \in \Lambda} u_{i}^{\prime} t_{i}\right)+2 \sum_{i \in \Lambda}\left(\sum_{k \notin \Lambda} u_{k} u_{i}^{\prime} t_{i} t_{k}\right) \\
& =2\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)\left(\sum_{i \in \Lambda} u_{i}^{\prime} t_{i}\right) .
\end{aligned}
$$

Then, (17) implies

$$
\begin{align*}
& -3\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right)\left(\sum_{i \in \Lambda} u_{i}^{\prime} t_{i}\right) \Phi^{\prime} \\
= & -\left(\Phi^{\prime \prime}+\sum_{j=1}^{r} t_{j} \Psi_{j}^{\prime \prime}-\sum_{j=1}^{r} u_{j} \Psi_{j}-\sum_{l=1}^{r}\left(\sum_{j=1}^{r} w_{j l} \Psi_{j}\right) t_{l}\right)\left(1+\sum_{j=1}^{r} u_{j} t_{j}\right) \tag{43}\\
& +\left(\Phi+\sum_{j=1}^{r} t_{j} \Psi_{j}\right)\left(\phi+\sum_{j=1}^{r} \varphi_{j} t_{j}-\sum_{j=1}^{r} u_{j}^{2}-\sum_{l=1}^{r}\left(\sum_{j=1}^{r} u_{j} w_{j l}\right) t_{l}\right) .
\end{align*}
$$

In (43), considering the constant terms with respect to t and the coefficients of terms containing t_{i} for $i \in \Lambda$, we have the following equations

$$
\begin{gather*}
-\Phi^{\prime \prime}+\sum_{j=1}^{r} u_{j} \Psi_{j}+\phi \Phi-\left(\sum_{j=1}^{r} u_{j}^{2}\right) \Phi=\mathbf{0} \tag{44}\\
-3 u_{i}^{\prime} \Phi^{\prime}= \\
+u_{i} \Phi^{\prime \prime}+\left(\sum_{j=1}^{r} u_{j} \Psi_{j}\right) u_{i}-\Psi_{i}^{\prime \prime}+\sum_{j=1}^{r} w_{i j} \Psi_{j} \tag{45}\\
+\varphi_{i} \Phi-\left(\sum_{j=1}^{r} u_{j} w_{i j}\right) \Phi+\phi \Psi_{i}-\left(\sum_{j=1}^{r} u_{j}^{2}\right) \Psi_{i} .
\end{gather*}
$$

Putting (44) into (45) and using the fact that $\Psi_{i}=u_{i} \Phi$ for $i \in \Lambda$, we get

$$
\begin{equation*}
-3 u_{i}^{\prime} \Phi^{\prime}=-\Psi_{i}^{\prime \prime}+\sum_{j=1}^{r} w_{i j} \Psi_{j}+\varphi_{i} \Phi-\left(\sum_{j=1}^{r} u_{j} w_{i j}\right) \Phi \tag{46}
\end{equation*}
$$

From $\Psi_{i}=u_{i} \Phi$, we have

$$
\begin{equation*}
\Psi_{i}^{\prime \prime}=u_{i}^{\prime \prime} \Phi+2 u_{i}^{\prime} \Phi^{\prime}+u_{i} \Phi^{\prime \prime} \quad \text { and } \quad \varphi_{i}=u_{i}^{\prime \prime}+u_{i} \phi \tag{47}
\end{equation*}
$$

By (44) and (47), equation (46) implies

$$
\begin{equation*}
u_{i}^{\prime} \Phi^{\prime}=\mathbf{0} \tag{48}
\end{equation*}
$$

for $i \in \Lambda$.
We now suppose that $\Phi^{\prime} \equiv \mathbf{0}$. By definition,

$$
\Phi^{\prime}=\alpha^{\prime \prime} \wedge e_{1} \wedge \cdots \wedge e_{r}+\sum_{k \notin \Lambda} \alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{k}^{\prime} \wedge \cdots \wedge e_{r}
$$

It implies that

$$
\alpha^{\prime} \wedge e_{1} \wedge \cdots \wedge e_{k}^{\prime} \wedge \cdots \wedge e_{r} \wedge e_{k}=\mathbf{0}
$$

for $k \notin \Lambda$. Therefore, the vector fields $\alpha^{\prime}, e_{1}, \ldots, e_{r}, e_{k}^{\prime}$ are linearly dependent for all s which means that $e_{k}^{\prime}=u_{k} \alpha^{\prime}$ for $k \notin \Lambda$. But it contradicts $q \neq$ $\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$. Therefore, by (48) we have

$$
u_{i}^{\prime}=0
$$

for $i \in \Lambda$.
Summing up the above results, we can see that u_{j} are constant functions for $j=1,2, \ldots, r$ and hence the functions $w_{i j}$ are constant for all $i, j=1,2, \ldots, r$ because of (39). Therefore, we can conclude that

$$
\begin{equation*}
\frac{\partial q}{\partial s}=0 \tag{49}
\end{equation*}
$$

for all s, which contradicts $\frac{\partial q}{\partial s} \neq 0$ on the open interval I_{1}.
Case 2. Suppose that the function q is of the form $q(t)=\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right)^{2}$. Then, we can see that $w_{i j}=u_{i} u_{j}$ for all $i, j=1,2, \ldots, r$ and hence $G=\Phi$. Therefore, $\Delta G=f G$ becomes

$$
\begin{equation*}
\frac{1}{2 q^{2}} \frac{\partial q}{\partial s} \Phi^{\prime}-\frac{1}{q} \Phi^{\prime \prime}=f \Phi \tag{50}
\end{equation*}
$$

Taking the inner product with Φ to the both sides of (50), we find the function f given as

$$
\begin{equation*}
f=-\frac{\phi(s)}{q(t)} \tag{51}
\end{equation*}
$$

Substituting f into (50) implies

$$
\begin{equation*}
\left(\sum_{i=1}^{r} u_{i}^{\prime} t_{i}\right) \Phi^{\prime}-\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right) \Phi^{\prime \prime}=-\phi\left(1+\sum_{i=1}^{r} u_{i} t_{i}\right) \Phi . \tag{52}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\Phi^{\prime \prime}=\phi \Phi . \tag{53}
\end{equation*}
$$

By (52) and (53), we get

$$
\sum_{i=1}^{r} u_{i}^{\prime} \Phi^{\prime} t_{i}=\mathbf{0}
$$

and hence $u_{i}^{\prime} \Phi^{\prime}=\mathbf{0}$ for all i.
If $\Phi^{\prime} \equiv \mathbf{0}$, it follows from (53) that the function ϕ is identically zero because Φ is non-zero vector field for all $s \in I$. Then, the function f is also identically zero by virtue of (51) that is a contradiction. Therefore, we have $u_{i}^{\prime}=0$ for all $i=1,2, \ldots, r$ and we can conclude that

$$
\frac{\partial q}{\partial s}=0
$$

for all $s \in I$. This is a contradiction.

According to Cases 1 and 2, we conclude from equation (12) that

$$
\frac{\partial q}{\partial s}=0
$$

for all $s \in I$. Therefore, we have:
Proposition 3.5. Let M be an (r+1)-dimensional non-cylindrical ruled submanifold parameterized by (3) in \mathbb{E}^{m} with pointwise 1-type Gauss map of the first kind. Then the functions

$$
u_{i}(s)=\left\langle\alpha^{\prime}(s), e_{i}^{\prime}(s)\right\rangle \quad \text { and } \quad w_{i j}(s)=\left\langle e_{i}^{\prime}(s), e_{j}^{\prime}(s)\right\rangle
$$

are constant for all $i, j=1,2, \ldots, r$.
Now, we need the following lemma to examine the mean curvature of the ruled submanifold of \mathbb{E}^{m} with pointwise 1-type Gauss map of the first kind:
Lemma 3.6. Let M be an n-dimensional submanifold of a Euclidean space \mathbb{E}^{m} with pointwise 1-type Gauss map G of the first kind. Then, the mean curvature vector field H is parallel in the normal bundle.

Proof. See Lemma 5.1 of [22].
We prove that a minimality of a non-cylindrical ruled submanifold M is equivalent for M to have pointwise 1-type Gauss map of the first kind.

Theorem 3.7. Let M be an $(r+1)$-dimensional non-cylindrical ruled submanifold in \mathbb{E}^{m}. Then, M has pointwise 1-type Gauss map G of the first kind if and only if M is minimal.

Proof. Suppose that a ruled submanifold M parameterized by (3) has pointwise 1-type Gauss map of the first kind. The mean curvature vector field H is given by

$$
\begin{align*}
H & =\frac{1}{r+1}\left\{h\left(\frac{x_{s}}{\left\|x_{s}\right\|}, \frac{x_{s}}{\left\|x_{s}\right\|}\right)+\sum_{i=1}^{r} h\left(x_{t_{i}}, x_{t_{i}}\right)\right\} \tag{54}\\
& =\frac{1}{r+1}\left\{\frac{1}{q} h\left(x_{s}, x_{s}\right)+\sum_{i=1}^{r} h\left(e_{i}, e_{i}\right)\right\}
\end{align*}
$$

where h is the second fundamental form on M. Since $x_{t_{i} t_{i}}=0,(54)$ is reduced to

$$
H=\frac{1}{(r+1) q}\left\{x_{s s}-\left\langle x_{s s}, x_{s}\right\rangle x_{s}-\sum_{i=1}^{r}\left\langle x_{s s}, e_{i}\right\rangle e_{i}\right\} .
$$

By straightforward computation, we get

$$
\left\langle x_{s s}, x_{s}\right\rangle=\sum_{i, j=1}^{r} \xi_{i j} t_{i} t_{j} \quad \text { and } \quad\left\langle x_{s s}, e_{i}\right\rangle=-u_{i}-\sum_{j=1}^{r} w_{i j} t_{j} .
$$

According to Proposition 3.5, $w_{i j}$ are constant for all $i, j=1,2, \ldots, r$ and thus

$$
\sum_{i, j=1}^{r} \xi_{i j} t_{i} t_{j}=\sum_{i \leq j}\left(\xi_{i j}+\xi_{j i}\right) t_{i} t_{j}=0
$$

So, the mean curvature vector field H is expressed as

$$
\begin{equation*}
H=\frac{1}{(r+1) q}\left\{\alpha^{\prime \prime}+\sum_{i=1}^{r} t_{i} e_{i}^{\prime \prime}+\sum_{i=1}^{r} u_{i} e_{i}+\sum_{j=1}^{r}\left(\sum_{i=1}^{r} w_{i j} e_{i}\right) t_{j}\right\}, \tag{55}
\end{equation*}
$$

which yields
(56)

$$
\begin{aligned}
&\langle H, H\rangle=\frac{1}{(r+1)^{2} q^{2}}\left\{\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle-\sum_{k=1}^{r} u_{k}^{2}+2 \sum_{i=1}^{r}\left\langle\alpha^{\prime \prime}, e_{i}^{\prime \prime}\right\rangle t_{i}-2 \sum_{k, i=1}^{r} u_{k} w_{k i} t_{i}\right. \\
&\left.+\sum_{i, j=1}^{r}\left\langle e_{i}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle t_{i} t_{j}-\sum_{i, j=1}^{r}\left(\sum_{k=1}^{r} w_{i k} w_{j k}\right) t_{i} t_{j}\right\}
\end{aligned}
$$

Differentiating (56) with respect to $t_{i_{0}}$ for some i_{0} and using Lemma 3.6, we have

$$
\begin{aligned}
& 0=\frac{-2}{(r+1)^{2} q^{3}}\left(\frac{\partial q}{\partial t_{i_{0}}}\right)\left\{\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle-\sum_{k=1}^{r} u_{k}^{2}+2 \sum_{i=1}^{r}\left\langle\alpha^{\prime \prime}, e_{i}^{\prime \prime}\right\rangle t_{i}-2 \sum_{k, i=1}^{r} u_{k} w_{k i} t_{i}\right. \\
&\left.+\sum_{i, j=1}^{r}\left\langle e_{i}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle t_{i} t_{j}-\sum_{i, j=1}^{r}\left(\sum_{k=1}^{r} w_{i k} w_{j k}\right) t_{i} t_{j}\right\} \\
&+\frac{2}{(r+1)^{2} q^{2}}\left\{\left\langle\alpha^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle-\sum_{k=1}^{r} u_{k} w_{k i_{0}}+\sum_{j=1}^{r}\left\langle e_{i_{0}}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle t_{j}\right. \\
&\left.-\sum_{j=1}^{r}\left(\sum_{k=1}^{r} w_{i_{0} k} w_{j k}\right) t_{j}\right\},
\end{aligned}
$$

or, equivalently,
(57)

$$
\begin{aligned}
& 0=-2\left(u_{i_{0}}+\sum_{j=1}^{r} w_{i_{0} j} t_{j}\right)\left\{\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle-\sum_{k=1}^{r} u_{k}^{2}+2 \sum_{i=1}^{r}\left\langle\alpha^{\prime \prime}, e_{i}^{\prime \prime}\right\rangle t_{i}-2 \sum_{k, i=1}^{r} u_{k} w_{k i} t_{i}\right. \\
& \left.+\sum_{i, j=1}^{r}\left\langle e_{i}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle t_{i} t_{j}-\sum_{i, j=1}^{r}\left(\sum_{k=1}^{r} w_{i k} w_{j k}\right) t_{i} t_{j}\right\} \\
& +\left(1+\sum_{i=1}^{r} 2 u_{i} t_{i}+\sum_{i, j=1}^{r} w_{i j} t_{i} t_{j}\right)\left\{\left\langle\alpha^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle-\sum_{k=1}^{r} u_{k} w_{k i_{0}}\right. \\
& \left.+\sum_{j=1}^{r}\left\langle e_{i_{0}}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle t_{j}-\sum_{j=1}^{r}\left(\sum_{k=1}^{r} w_{i_{0} k} w_{j k}\right) t_{j}\right\} .
\end{aligned}
$$

Considering the coefficients of terms containing t_{j}, t_{j}^{2} and t_{j}^{3} for some $j=$ $1,2, \ldots, r$ in (57), we have

$$
\begin{align*}
& -4 u_{i_{0}}\left\langle\alpha^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle+4 u_{i_{0}}\left(\sum_{k=1}^{r} u_{k} w_{k j}\right)-2 w_{i_{0} j}\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle+2 w_{i_{0} j}\left(\sum_{k=1}^{r} u_{k}^{2}\right) \\
& +\left\langle e_{i_{0}}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle-\sum_{k=1}^{r} w_{i_{0} k} w_{j k}+2 u_{j}\left\langle\alpha^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle-2 u_{j}\left(\sum_{k=1}^{r} u_{k} w_{k i_{0}}\right)=0, \tag{58}
\end{align*}
$$

$$
\begin{equation*}
-2 u_{i_{0}}\left\langle e_{j}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle+2 u_{i_{0}}\left(\sum_{k=1}^{r} w_{j k}^{2}\right)-4 w_{i_{0} j}\left\langle\alpha^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle+4 w_{i_{0} j}\left(\sum_{k=1}^{r} u_{k} w_{k j}\right) \tag{59}
\end{equation*}
$$

$$
+2 u_{j}\left\langle e_{i_{0}}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle-2 u_{j}\left(\sum_{k=1}^{r} w_{i_{0} k} w_{j k}\right)+w_{j j}\left\langle\alpha^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle-w_{j j}\left(\sum_{k=1}^{r} u_{k} w_{k i_{0}}\right)=0
$$

(60) $-2 w_{i_{0} j}\left\langle e_{j}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle+2 w_{i_{0} j}\left(\sum_{k=1}^{r} w_{j k}^{2}\right)+w_{j j}\left\langle e_{i_{0}}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle-w_{j j}\left(\sum_{k=1}^{r} w_{i_{0} k} w_{j k}\right)=0$.

Since $w_{i_{0} i_{0}} \neq 0$, by replacing j with i_{0} in (58), (59) and (60), we can obtain easily
(61) $\left\langle\alpha^{\prime \prime}, \alpha^{\prime \prime}\right\rangle=\sum_{k=1}^{r} u_{k}^{2}, \quad\left\langle\alpha^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle=\sum_{k=1}^{r} u_{k} w_{k i_{0}} \quad$ and $\quad\left\langle e_{i_{0}}^{\prime \prime}, e_{i_{0}}^{\prime \prime}\right\rangle=\sum_{k=1}^{r} w_{i_{0} k}^{2}$.

Equation (58) with the help of (61) yields

$$
\begin{equation*}
\left\langle e_{i}^{\prime \prime}, e_{j}^{\prime \prime}\right\rangle=\sum_{k=1}^{r} w_{i k} w_{j k} \tag{62}
\end{equation*}
$$

Together with equations (56), (61) and (62), we conclude that the mean curvature vector field H vanishes on M.

Conversely, suppose that a non-cylindrical ruled submanifold M is minimal. The mean curvature vector field H is given by

$$
\begin{aligned}
H= & \frac{1}{(r+1) q}\left\{x_{s s}-\left\langle x_{s s}, x_{s}\right\rangle x_{s}-\sum_{i=1}^{r}\left\langle x_{s s}, e_{i}\right\rangle e_{i}\right\} \\
= & \frac{1}{(r+1) q}\left\{\alpha^{\prime \prime}+\sum_{i=1}^{r} t_{i} e_{i}^{\prime \prime}-\left(\sum_{k, j=1}^{r} \xi_{k j} t_{k} t_{j}\right)\left(\alpha^{\prime}+\sum_{i=1}^{r} t_{i} e_{i}^{\prime}\right)\right. \\
& \left.+\sum_{i=1}^{r}\left(u_{i}+\sum_{j=1}^{r} w_{i j} t_{j}\right) e_{i}\right\},
\end{aligned}
$$

from which, $H=\mathbf{0}$ implies

$$
\alpha^{\prime \prime}=-\sum_{i=1}^{r} u_{i} e_{i}, \quad e_{i}^{\prime \prime}=-\sum_{j=1}^{r} w_{j i} e_{j} \quad \text { and } \quad \xi_{k j}=0
$$

for all $i, j, k=1, \ldots, r$. It follows that

$$
u_{i}^{\prime}=\left\langle\alpha^{\prime \prime}, e_{i}^{\prime}\right\rangle+\left\langle\alpha^{\prime}, e_{i}^{\prime \prime}\right\rangle=0
$$

Therefore, we see that u_{i} and $w_{i j}$ are constant functions for all $i, j=1, \ldots, r$ which means that $\frac{\partial q}{\partial s}=0$ on M.

By straightforward computation, we get

$$
\Phi^{\prime \prime}+\sum_{i=1}^{r} \Psi_{i}^{\prime \prime} t_{i}=\frac{1}{2} \sum_{k=1}^{r} \frac{\partial q}{\partial t_{k}} \Psi_{k}-\sum_{k=1}^{r} w_{k k}\left(\Phi+\sum_{i=1}^{r} \Psi_{i} t_{i}\right) .
$$

Then, by using terms in (12), we have

$$
\Delta G=\frac{1}{q^{5 / 2}}\left\{q \sum_{k=1}^{r} w_{k k}-\frac{1}{2} \sum_{k=1}^{r}\left(\frac{\partial q}{\partial t_{k}}\right)^{2}+\frac{1}{2} q \sum_{k=1}^{r} \frac{\partial^{2} q}{\partial t_{k}^{2}}\right\}\left(\Phi+\sum_{i=1}^{r} \Psi_{i} t_{i}\right),
$$

which is reduced to

$$
\Delta G=f G
$$

for some function

$$
f=\frac{1}{q^{2}}\left\{q \sum_{k=1}^{r} w_{k k}-\frac{1}{2} \sum_{k=1}^{r}\left(\frac{\partial q}{\partial t_{k}}\right)^{2}+\frac{1}{2} q \sum_{k=1}^{r} \frac{\partial^{2} q}{\partial t_{k}^{2}}\right\} .
$$

Therefore, a minimal non-cylindrical ruled submanifold has pointwise 1-type Gauss map of the first kind. It completes the proof.

Thus, combining Theorem 3.2, Theorem 3.7 and the result on generalized helicoid in [1], we have:

Theorem 3.8 (Classification). The only ruled submanifold M of Euclidean space \mathbb{E}^{m} with pointwise 1-type Gauss map of the first kind is an open part of a generalized circular cylinder $\Sigma_{a} \times \mathbb{E}^{r-1}$ or a generalized helicoid.

Combining the result of [9] with Theorem 3.7, we have:
Theorem 3.9. Let M be a non-cylindrical ruled submanifold of \mathbb{E}^{m}. Then, the following are equivalent:
(1) M is minimal.
(2) M is a generalized helicoid.
(3) M is a finite type submanifold.
(4) M has pointwise 1-type Gauss map of the first kind.

Acknowledgment. The authors would like to express their sincere thanks to the referee for his/her valuable suggestions that would improve this paper.

References

[1] J. M. Barbosa, M. Dajczer, and L. P. Jorge, Minimal ruled submanifolds in spaces of constant curvature, Indiana Univ. Math. J. 33 (1984), no. 4, 531-547.
[2] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Second edition, World Scientific, Hackensack, NJ, 2015.
[3] B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447-455.
[4] B.-Y. Chen, F. Dillen, L. Verstraelen, and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), no. 3, 447-453.
[5] B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161-186.
[6] M. Choi, D.-S. Kim, Y. H. Kim, and D. W. Yoon, Circular cone and its Gauss map, Colloq. Math. 129 (2012), no. 2, 203-210.
[7] M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753-761.
[8] M. Choi, Y. H. Kim, and D. W. Yoon, Classification of ruled surfaces with pointwise 1-type Gauss map, Taiwanese J. Math. 14 (2010), no. 4, 1297-1308.
[9] F. Dillen, Ruled submanifolds of finite type, Proc. Amer. Math. Soc. 114 (1992), no. 3, 795-798.
[10] D.-S. Kim, Ruled surfaces of finite type in Lorentz space-times, Honam Math. J. 31 (2009), no. 2, 177-183.
[11] , Ruled submanifolds of finite type in Lorentz space-times, Honam Math. J. 32 (2010), no. 2, 261-269.
[12] D.-S. Kim and Y. H. Kim, Finite type ruled hypersurfaces in Lorentz-Minkowski space, Honam Math. J. 30 (2008), no. 4, 743-748.
[13] , Some classification results on finite type ruled submanifolds in a LorentzMinkowski space, Taiwanese J. Math. 16 (2012), no. 4, 1475-1488.
[14] , Minimal ruled submanifolds in Minkowski space \mathbb{L}^{m}, J. Geom. Phys. 62 (2012), no. 9, 1893-1902.
[15] D.-S. Kim, Y. H. Kim, and S. M. Jung, Ruled submanifolds with Harmonic Gauss map, Taiwanese J. Math. 18 (2014), no. 1, 53-76.
[16] , Some classifications of ruled submanifolds in Minkowski space and their Gauss map, Taiwanese J. Math. 18 (2014), no. 4, 10221-1040.
[17] D.-S. Kim, Y. H. Kim, and D. W. Yoon, Extended B-scrolls and their Gauss maps, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1031-1040.
[18] , Characterization of generalized B-scrolls and cylinders over finite type curves, Indian J. Pure Appl. Math. 33 (2003), no. 11, 1523-1532.
[19] , Finite type ruled surfaces in Lorentz-Minkowski space, Taiwanese J. Math. 11 (2007), no. 1, 1-13.
[20] Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski spaces, Soochow J. Math. 26 (2000), no. 1, 85-96.
[21] , Ruled surfaces with pointwise 1-type Gauss maps, J. Geom. Phys. 34 (2000), no. 3-4, 191-205.
[22] \qquad , On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581.

Sun Mi Jung
Department of Mathematics Education
Silla University
Busan 46958, Korea
E-mail address: jung3756@silla.ac.kr

Dong-Soo Kim
Department of Mathematics
Chonnam National University
Gwanguu 61186, Korea
E-mail address: dosokim@chonnam.ac.kr
Young Ho Kim
Department of Mathematics Education
Kyungpook National University
Daegu 41566, Korea
E-mail address: yhkim@knu.ac.kr
Dae Won Yoon
Department of Mathematics Education
Gyeongsang National University
Jinju 52828, Korea
E-mail address: yhkim@knu.ac.kr

[^0]: Received August 18, 2015; Revised February 12, 2016.
 2010 Mathematics Subject Classification. Primary 53A04, 53A05, 53A07.
 Key words and phrases. pointwise 1-type Gauss map, ruled submanifold, Grassmannian manifold, generalized circular cylinder.
 D.-S. Kim was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015020387).
 Y. H. Kim was supported by supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2042298).
 D. W. Yoon was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2003994).

