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GAUSS MAPS OF RULED SUBMANIFOLDS AND

APPLICATIONS I

Sun Mi Jung, Dong-Soo Kim, Young Ho Kim, and Dae Won Yoon

Abstract. As a generalizing certain geometric property occurred on the
helicoid of 3-dimensional Euclidean space regarding the Gauss map, we
study ruled submanifolds in a Euclidean space with pointwise 1-type
Gauss map of the first kind. In this paper, as new examples of cylin-
drical ruled submanifolds in Euclidean space, we construct generalized
circular cylinders and characterize such ruled submanifolds and minimal
ruled submanifolds of Euclidean space with pointwise 1-type Gauss map
of the first kind.

1. Introduction

An immersion x of a manifold M into a Euclidean space Em is said to be of

finite type if it can be expressed as

x = x0 + x1 + · · ·+ xk

for some positive integer k, where x0 is a constant vector and ∆xi = λixi for
some λi ∈ R, i = 1, . . . , k. Here ∆ denotes the Laplace operator defined on M .
If λ1, . . . , λk are mutually different, M is said to be of k-type. In particular, the
minimal submanifolds are very typical finite type submanifolds, namely 1-type
submanifolds.

A ruled surface or a ruled submanifold is one of the typical geometric objects
that many mathematicians have studied with great interest in the classical dif-
ferential geometry. Due to Catalan’s Theorem, the only minimal ruled surfaces
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in Euclidean 3-space E3 are the planes and the helicoids. J. M. Barbosa, M. Da-
jczer and L. P. Jorge investigated the minimal ruled submanifolds and showed
that those of Euclidean space are the generalized helicoids [1]. By using the
notion of finite type immersion, B.-Y. Chen et al. showed that a ruled surface
of finite type in an m-dimensional Euclidean space is part of either a cylinder
over a curve of finite type or a helicoid in E3 [4]. In particular, making use of
the character of plane curves of finite type, we see that a ruled surface of finite
type in E3 is part of a plane, a circular cylinder or a helicoid. And in [9], F.
Dillen extended these results to ruled submanifolds of finite type in Euclidean
space.

Since the notion of finite type immersion of Riemannian manifolds into Eu-
clidean space was introduced by B.-Y. Chen in the late 1970’s, such a notion has
been extended to submanifolds in pseudo-Euclidean space and to smooth func-
tions defined on submanifolds of Euclidean space or pseudo-Euclidean space
[2]. Especially, two of the present authors completed the classification of the
minimal ruled submanifolds in Minkowski space by considering two aspects
whether rulings of the ruled submanifolds are non-degenerate or degenerate
[14]. Also, in [13, 19], the ruled surfaces and ruled submanifolds of finite type
were examined.

On the other hand, some studies were focused on submanifolds of Euclidean
or pseudo-Euclidean space with the Gauss map of finite type. In [5], B.-Y. Chen
and P. Piccini initiated the submanifolds in Euclidean space with finite type
Gauss map so that they classified compact surfaces with 1-type Gauss map,
that is, ∆G = λ(G + C), where C is a constant vector and λ ∈ R. After that,
quite a few of studies on ruled surfaces and ruled submanifolds with finite type
Gauss map in Euclidean space or pseudo-Euclidean space have been studied
and classified ([10, 11, 12, 15, 16, 17, 18, 20]).

However, some surfaces including a helicoid have an interesting property
concerning the Gauss map which looks like satisfying an eigenvalue problem.
As a matter of fact, it is not: The helicoid in E3 parameterized by

x(u, v) = (u cos v, u sin v, av), a 6= 0

has the Gauss map

G =
1√

a2 + u2
(a sin v,−a cos v, u).

Its Laplacian ∆G is given by

∆G =
2a2

(a2 + u2)2
G.

On the other hand, the right (or circular) cone Ca with parametrization

x(u, v) = (u cos v, u sin v, au), a ≥ 0
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has the Gauss map

G =
1√

1 + a2
(a cos v, a sin v,−1)

which satisfies

∆G =
1

u2
(G+ (0, 0,

1√
1 + a2

)

(cf. [6, 7]). The Gauss maps of examples above are similar to 1-type, but
obviously different from the usual sense of 1-type Gauss map. Based on these,
we define:

Definition 1.1. An oriented n-dimensional submanifold M of the Euclidean
space Em is said to have pointwise 1-type Gauss map if it satisfies the condition

(1) ∆G = f(G+ C),

where f is a non-zero smooth function on M and C some constant vector.
In particular, if C is zero, the Gauss map G is said to be of the first kind.
Otherwise, it is said to be of the second kind ([3, 6, 7, 8, 21]).

In [6, 7], M. Choi et al. proved that a ruled surface in 3-dimensional Eu-
clidean space with pointwise 1-type Gauss map is part of a plane, a circular
cylinder, a helicoid, a cylinder over a plane curve of infinite type or a circular
cone. And, in [8, 22], ruled surfaces in pseudo-Euclidean space with pointwise
1-type Gauss map were studied.

We now raise a question: Can we completely classify ruled submanifolds in

Euclidean space with pointwise 1-type Gauss map of the first kind?

In this paper, we study the ruled submanifolds in Euclidean space with
pointwise 1-type Gauss map of the first kind and construct the new examples
of ruled submanifolds called generalized circular cylinders. As a result, we
completely classify ruled submanifolds of Euclidean space with pointwise 1-
type Gauss map of the first kind.

All of geometric objects under consideration are smooth and submanifolds
are assumed to be connected unless otherwise stated.

2. Preliminaries

Let x : M → Em be an isometric immersion of an n-dimensional Riemannian
manifold M into Em. Let (x1, x2, . . . , xn) be a local coordinate system of M .
For the components gij of the Riemannian metric 〈·, ·〉 on M induced from that
of Em, we denote by (gij) (respectively, G) the inverse matrix (respectively, the
determinant) of the matrix (gij). Then the Laplace operator ∆ on M is defined
by

∆ = − 1√
G
∑

i,j

∂

∂xi

(
√
Ggij ∂

∂xj

).

We now choose an adapted local orthonormal frame {e1, e2, . . . , em} in Em

such that e1, e2, . . . , en are tangent to M and en+1, en+2, . . . , em normal to M .
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The Gauss map G : M → G(n,m) ⊂ EN (N = mCn), G(p) = (e1 ∧ e2 ∧
· · · ∧ en)(p) of M is a smooth map which carries a point p in M to an oriented
n-plane in Em by the parallel translation of the tangent space of M at p to an
n-plane passing through the origin in E

m, where G(n,m) is the Grassmannian
manifold consisting of all oriented n-planes through the origin of Em.

An inner product ≪ ·, · ≫ on G(n,m) ⊂ EN is defined by

≪ ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn ≫= det(〈eil , ejk〉),
where l, k run over the range {1, 2, . . . , n}. Then, {ei1 ∧ ei2 ∧ · · · ∧ ein | 1 ≤ i1 <
· · · < in ≤ m} is an orthonormal basis of EN .

Now, we introduce the definition of a ruled submanifoldM in Em. An (r+1)-
dimensional submanifold M in Em is called a ruled submanifold if M is foliated
by r-dimensional totally geodesic submanifolds E(s, r) of Em along a regular
curve α = α(s) on M defined on an open interval I. Thus, a parametrization
of a ruled submanifold M in Em can be given by

x = x(s, t1, t2, . . . , tr) = α(s) +

r
∑

i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r. For each s, E(s, r) is open
in Span{e1(s), e2(s), . . . , er(s)}, which is the linear span of linearly indepen-
dent vector fields e1(s), e2(s), . . . , er(s) along the curve α. We call E(s, r) the
rulings and α the base curve of the ruled submanifold M . In particular, the
ruled submanifold M is said to be cylindrical if E(s, r) is parallel along α, or
non-cylindrical otherwise.

Definition 2.1. An (r + 1)-dimensional cylindrical ruled submanifold M is
called a generalized circular cylinder Σa × Er−1 if the base curve α is a circle
and the generators of rulings are orthogonal to the plane containing the circle
α, where Σa = S1(a) × R is a circular cylinder over a circle S1(a) of radius a
in E3.

For later use, we need:

Lemma 2.1 (Lemma 2.2 in [1]). Given a curve α and orthonormal vector

fields e1, e2, . . . , en along α in a Riemannian manifold M̄ with the Riemannian

connection D̄, we can always choose orthonormal vector fields f1, . . ., fn along

α such that:
(a) The sets of vectors {fj(s) : 1 ≤ j ≤ n} and {ej(s) : 1 ≤ j ≤ n} generate

the same subspace of Tα(s)M̄ .

(b) The vector fields (D̄/ds)fi(s) are normal to the subspace of Tα(s)M̄
spanned by {fj(s) : 1 ≤ j ≤ n} for all i = 1, 2, . . . , n.

3. Ruled submanifolds and Gauss map

Let M be an (r + 1)-dimensional ruled submanifold in Em. Then, the base
curve α can be chosen to be orthogonal to the rulings by taking an integral curve
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of the field of normal directions to the rulings of M . Without loss of generality,
we may assume that α is a unit speed curve, that is, 〈α′(s), α′(s)〉 = 1. From
now on, the prime ′ denotes d/ds unless otherwise stated. By Lemma 2.1, we
may choose orthonormal vector fields e1(s), . . . , er(s) along α satisfying

(2) 〈α′(s), ei(s)〉 = 0, 〈e′i(s), ej(s)〉 = 0 for s ∈ I and i, j = 1, 2, . . . , r.

A parametrization of M is then obtained as

(3) x = x(s, t1, t2, . . . , tr) = α(s) +

r
∑

i=1

tiei(s), s ∈ I.

In this paper, we always assume that the parametrization (3) satisfies the
condition (2). Then, M has the Gauss map

G =
1

‖xs‖
xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

(4) G =
1

q1/2
(Φ + Ψ), with Ψ =

r
∑

i=1

tiΨi,

where q is the function of s, t1, t2, . . . , tr defined by q = 〈xs, xs〉, Φ and Ψi

(i = 1, 2, . . . , r) are vector fields along α given by

Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er.

Now, we separate the cases into two typical types of ruled submanifolds
which are cylindrical or non-cylindrical. First of all, we consider the following
lemma.

Lemma 3.1. Suppose that a unit speed curve α(s) in an m-dimensional Eu-

clidean space Em defined on an interval I satisfies

(5) α′′′(s) = f(s)(α′(s) + C),

where f is a function and C a constant vector in Em. Then, the curve α lies

in a 3-dimensional Euclidean space E
3. In particular, if the constant vector C

is zero, we see that α is a plane curve.

Proof. We fix a point s0 ∈ I. Let us denote by V the linear span of {α′(s0),
α′′(s0), C}. Then V is a at most 3-dimensional space in Em.

For any vector a in the orthogonal complement V ⊥ of V , we consider the
function ha(s) defined by ha(s) = 〈a, α′(s)〉. Then, it follows from (5) that

(6) h′′
a(s) = f(s)ha(s).

Hence, the function ha(s) is a solution of a second order linear differential
equation with initial condition ha(s0) = h′

a(s0) = 0. This shows that the
function ha(s) vanishes identically on the interval I. Thus, we have α′(s) ∈ V
for all s ∈ I, which shows that the curve α lies in a parallel displacement
α(s0) + V of the space V . This completes the proof. �



1314 S. M. JUNG, D.-S. KIM, Y. H. KIM, AND D. W. YOON

Theorem 3.2. A cylindrical ruled submanifold M in Em has pointwise 1-type

Gauss map of the first kind if and only if M is an open part of a generalized

circular cylinder.

Proof. Let M be an (r + 1)-dimensional cylindrical ruled submanifold in Em,
which is parameterized by (3). We may assume that e1, e2, . . . , er generating
the rulings are constant vectors.

Then, q ≡ 1 and the Laplace operator ∆ of M is expressed by

∆ = − ∂2

∂s2
−

r
∑

i=1

∂2

∂t2i

and the Gauss map G of M is given by

G = α′ ∧ e1 ∧ · · · ∧ er.

If we denote by ∆′ the Laplace operator of α, that is ∆′ = − ∂2

∂s2
, we have the

Laplacian ∆G of the Gauss map

∆G = ∆′α′ ∧ e1 ∧ · · · ∧ er.

We now suppose that the Gauss map G is of pointwise 1-type of the first
kind, that is ∆G = fG for some function f . Then the condition ∆G = fG is
rewritten as

∆′α′ ∧ e1 ∧ · · · ∧ er = fα′ ∧ e1 ∧ · · · ∧ er.

Therefore we have

∆′α′ = fα′,

which shows that the function f depends only on s. It follows that

(7) −α′′′(s) = f(s)α′(s).

Then, Lemma 3.1 implies that α is a plane curve and the function f is given
by f = 〈α′′, α′′〉, which is the squared curvature function of α. By considering
the Frenet formula for α satisfying (7), we easily see that the curvature of the
base curve is non-zero constant. Thus, the plane curve α is part of a circle.
Therefore, M is an open part of a generalized circular cylinder. The converse
is straightforward. �

Next, we deal with the case that M is non-cylindrical. Let M be an (r+1)-
dimensional non-cylindrical ruled submanifold parameterized by (3) in Em.
Then, we have

xs = α′(s) +
r

∑

j=1

tje
′
j(s), xti = ei(s)

for s ∈ I and i = 1, 2, . . . , r. The aforementioned function q is given by

(8) q = 〈xs, xs〉 = 1 +
r

∑

i=1

2uiti +
r

∑

i,j=1

wijtitj,
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where ui = 〈α′, e′i〉, wij = 〈e′i, e′j〉, i, j = 1, . . . , r. Note that q is a polynomial
in t = (t1, . . . , tr) with functions in s as coefficients and the degree of q is 2.
Then, the Laplace operator ∆ of M is obtained by

(9) ∆ =
1

2q2
∂q

∂s

∂

∂s
− 1

q

∂2

∂s2
− 1

2q

r
∑

i=1

∂q

∂ti

∂

∂ti
−

r
∑

i=1

∂2

∂t2i
.

Proposition 3.3. Let M be an (r+ 1)-dimensional non-cylindrical ruled sub-

manifold of Em parameterized by (3) satisfying (2). Suppose some generators

ej1 , ej2 , . . . , ejk (1 ≤ k < r) of the rulings are constant vectors along α. Then,

M has pointwise 1-type Gauss map if and only if the ruled submanifold M1 has

pointwise 1-type Gauss map, where M1 is the non-cylindrical ruled submanifold

over the base curve α with the rulings generated by ej for j 6= j1, j2, . . . , jk.

Proof. Suppose that M is an (r + 1)-dimensional non-cylindrical ruled sub-
manifold of Em parameterized by (3) with e′ji = 0 for all i = 1, 2, . . . , k. By
rearranging the indices, we may assume that j1, . . . , jk are r − k + 1, . . . , r.
Also, M can be expressed as M = M1 × Ek, where M1 is parameterized by

(10) x = x(s, t1, t2, · · · , tr−k) = α(s) +

r−k
∑

i=1

tiei(s).

It is easy to show that the Gauss map G on M satisfies

(11) G = G1 ∧ C0 and ∆G = (∆1G1) ∧C0,

where ∆1 is the Laplace operator on M1, G1 the Gauss map on M1 and C0 the
constant vector field defined by C0 = er−k+1 ∧ · · · ∧ er.

Choose orthonormal vector fields er+1, . . . , em of the normal space of M
along α. If we put e0(s) = α′(s), then {ei1∧· · ·∧eir+1

| 0 ≤ i1 < · · · < ir+1 ≤ m}
is an orthonormal basis of EN which contains the Grassmannian manifold
G(r + 1,m).

Suppose that M has pointwise 1-type Gauss map satisfying (1). Let us
denote by V = Ek ⊂ Em the space spanned by the constant vectors er−k+1, . . .,
er. Then, using the basis elements of G(r + 1,m) the constant vector C is
uniquely decomposed as follows:

C = C1 ∧ C0 +D,

where C1 and D are constant vectors such that each component of C1 is or-
thogonal to V and each term of D does not contain all of er−k+1, . . . , er.

If we compare (1) and (11) and take into account of the linearly independency
of the basis elements of G(r + 1,m), we see that

D = 0

and

∆G = (∆1G1) ∧ C0 = f(G1 + C1) ∧ C0,
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from which, we see that the function f depends on s, t1, t2, . . . , tr−k. This
shows that the Gauss map G1 of M1 is of pointwise 1-type satisfying ∆1G1 =
f(G1 + C1).

The converse is straightforward. �

Based on Proposition 3.3, without loss of generality, we may assume that
e′j(s) 6= 0 for all j = 1, 2, . . . , r on the domain I of α. From now on, for a

polynomial F (t) in t = (t1, t2, . . . , tr), deg F (t) denotes the degree of F (t) in
t = (t1, t2, . . . , tr) unless otherwise stated.

Now, we suppose that M has pointwise 1-type Gauss map of the first kind,
i.e., ∆G = fG. Using (4) and (9), this condition is written as

(12)

(
∂q

∂s
)2(Φ +

r
∑

j=1

Ψjtj)−
3

2
q
∂q

∂s
(Φ′ +

r
∑

j=1

Ψ′
jtj)−

1

2
q
∂2q

∂s2
(Φ +

r
∑

j=1

Ψjtj)

+ q2(Φ′′ +

r
∑

j=1

Ψ′′
j tj) +

1

2
q

r
∑

i=1

(
∂q

∂ti
)2(Φ +

r
∑

j=1

Ψjtj)−
1

2
q2

r
∑

i=1

∂q

∂ti
Ψi

− 1

2
q2

r
∑

i=1

∂2q

∂t2i
(Φ +

r
∑

j=1

Ψjtj) + fq3(Φ +

r
∑

j=1

Ψjtj) = 0

for some non-zero function f , where 0 denotes zero vector. For the vector fields
Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψj = e′j ∧ e1 ∧ · · · ∧ er (j = 1, 2, . . . , r), we put

≪ Φ,Φ′′ ≫ = −µ+ 2
r

∑

k=1

u2
k −

r
∑

k=1

wkk,

≪ Φ,Ψ′′
i ≫ = ỹi + 2

r
∑

k=1

ukwik −
r

∑

k=1

uiwkk,

≪ Ψj ,Φ
′′ ≫ = pj + 2

r
∑

k=1

ukwjk −
r

∑

k=1

ujwkk,

≪ Ψj,Ψ
′′
i ≫ = σji + 2

r
∑

k=1

wjkwik −
r

∑

k=1

wjiwkk,

≪ Φ,Ψi ≫ = ui, ≪ Φ,Ψ′
i ≫= x̃i,

≪ Ψj,Φ
′ ≫ = z̃j , ≪ Ψj,Ψi ≫= wji, ≪ Ψj,Ψ

′
i ≫= ξji,

where µ = 〈α′′, α′′〉, x̃i = 〈α′, e′′i 〉, ỹi = 〈α′, e′′′i 〉, z̃i = 〈α′′, e′i〉, pi = 〈α′′′, e′i〉,
ξij = 〈e′i, e′′j 〉 and σij = 〈e′i, e′′′j 〉 for i, j = 1, 2, . . . , r. We easily see that

(13) u′
i(s) = x̃i(s) + z̃i(s) and w′

ij(s) = ξij(s) + ξji(s).
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If we take the inner product with the vector Φ to equation (12), then we
obtain

(
∂q

∂s
)2(1 +

r
∑

j=1

tjuj)−
3

2
q
∂q

∂s
(

r
∑

j=1

tj x̃j)−
1

2
q
∂2q

∂s2
(1 +

r
∑

j=1

tjuj)

+ q2(φ +

r
∑

j=1

tjϕj) +
1

2
q

r
∑

i=1

(
∂q

∂ti
)2(1 +

r
∑

j=1

tjuj)−
1

2
q2

r
∑

i=1

∂q

∂ti
ui

− 1

2
q2

r
∑

i=1

∂2q

∂t2i
(1 +

r
∑

j=1

tjuj) + fq3(1 +

r
∑

j=1

tjuj) = 0,

where we put

φ =≪ Φ,Φ′′ ≫ and ϕi =≪ Φ,Ψ′′
i ≫ .

By putting

(14)

P (t) = (
∂q

∂s
)2(1 +

r
∑

j=1

ujtj)−
3

2
q
∂q

∂s
(

r
∑

j=1

x̃jtj)−
1

2
q
∂2q

∂s2
(1 +

r
∑

j=1

ujtj)

+ q2(φ+

r
∑

j=1

ϕjtj) +
1

2
q

r
∑

i=1

(
∂q

∂ti
)2(1 +

r
∑

j=1

ujtj)

− 1

2
q2

r
∑

i=1

∂q

∂ti
ui −

1

2
q2

r
∑

i=1

∂2q

∂t2i
(1 +

r
∑

j=1

ujtj),

we may assume that the function f is the rational function in t with functions
in s as coefficients of the form

(15) f = − P (t)

q3(1 +
∑r

j=1 ujtj)
.

Substituting (15) into (12) and multiplying (1+
∑r

j=1 ujtj) with the equation
obtained in such a way, we get
(16)

− 3

2
q(
∂q

∂s
)(Φ′ +

r
∑

j=1

tjΨ
′
j)(1 +

r
∑

k=1

uktk) +
3

2
q(
∂q

∂s
)(Φ +

r
∑

j=1

tjΨj)(

r
∑

k=1

x̃ktk)

+ q2(Φ′′ +

r
∑

j=1

tjΨ
′′
j )(1 +

r
∑

k=1

uktk)− q2(Φ +

r
∑

j=1

tjΨj)(φ +

r
∑

k=1

ϕktk)

− 1

2
q2

r
∑

i=1

(
∂q

∂ti
)Ψi(1 +

r
∑

k=1

uktk) +
1

2
q2

r
∑

i=1

(
∂q

∂ti
)ui(Φ +

r
∑

j=1

tjΨj) = 0.

We rewrite (16) in the following form

(17) −3

2
(
∂q

∂s
)R(t) = qQ(t),
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where

(18) R(t) = (Φ′ +

r
∑

j=1

tjΨ
′
j)(1 +

r
∑

k=1

uktk)− (Φ +

r
∑

j=1

tjΨj)(

r
∑

k=1

x̃ktk)

and

Q(t) = − (Φ′′ +

r
∑

j=1

tjΨ
′′
j )(1 +

r
∑

k=1

uktk) + (Φ +

r
∑

j=1

tjΨj)(φ +

r
∑

k=1

ϕktk)

+
1

2

r
∑

i=1

(
∂q

∂ti
)Ψi(1 +

r
∑

k=1

uktk)−
1

2

r
∑

i=1

(
∂q

∂ti
)ui(Φ +

r
∑

j=1

tjΨj).

Suppose that ∂q
∂s

6= 0 on some open interval I1. We show that it is a contra-

diction no matter what the function q is of the form either q = (1+
∑r

i=1 uiti)
2

or q 6= (1 +
∑r

i=1 uiti)
2. In order to do that, we need the following lemma.

Lemma 3.4. Let M be an (r + 1)-dimensional non-cylindrical ruled subman-

ifold parameterized by (3) in Em with pointwise 1-type Gauss map of the first

kind. Suppose that ∂q
∂s

6= 0 on some open interval I1. If q(t) 6= (1+
∑r

i=1 uiti)
2,

then R(t) in (18) has to be expressed as

(19) R(t) = q(t)B(s)

for some vector field B(s) along α.

Proof. We consider the following two cases according to q and ∂q
∂s

whether they

are relatively prime or not. First, suppose that q and ∂q
∂s

are relatively prime.
It is obvious that (19) holds.

Next, suppose that q and ∂q
∂s

are not relatively prime. Without loss of

generality, we may assume that q = (1 +
∑r

i=1 ai(s)ti)(1 +
∑r

i=1 bi(s)ti) and
∂q
∂s

= (1 +
∑r

i=1 ai(s)ti)(
∑r

j=1 cjtj) for some functions ai(s), bi(s), ci(s) of s

and i = 1, 2, . . . , r. Since q = 1 +
∑

i 2uiti +
∑

i,j wijtitj and ∂q
∂s

=
∑

i 2u
′
iti +

∑

i,j w
′
ijtitj , we can see that

(20) ai + bi = 2ui ci = 2u′
i and wij = ai(2uj − aj).

Since wij = wji for all i, j, we have

(21) aiuj = ajui

for all i, j = 1, 2, . . . , r. Since aj, bj , cj are not all vanishing functions for all
j = 1, 2, . . . , r, there exists some j0 such that aj0 6= 0. Together with (20) and
(21), we see that ai = 0 if and only if ui = 0 and bi = 0 for all i = 1, 2 . . . , r.
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On the other hand, from (17), R(t) and Q(t) must be of the form

(22)

R(t) =(1 +

r
∑

i=1

(2ui − ai)ti)(a(s) +

r
∑

j=1

bj(s)tj),

Q(t) =− 3

2
(

r
∑

j=1

2u′
jtj)(a(s) +

r
∑

j=1

bj(s)tj)

for some vector fields a(s) and bj(s) along α for j = 1, 2, . . . , r. By comparing
the constant terms with respect to t in (18) and (22), we can see that

(23) a(s) = Φ′(s).

Putting (23) into (22) and then, considering the coefficients of terms containing
tj0 in (18), we get

(24) bj0(s) = (aj0 − uj0)Φ
′ +Ψ′

j0
− x̃j0Φ.

Now, we have two equations to express Q(t). With the aid of (23) and (24),
comparing the coefficients of terms containing t0j0 , t

1
j0
, t2j0 of these equations,

we have the following equations:

(25) −Φ′′ + φΦ +

r
∑

i=1

uiΨi −
r

∑

i=1

u2
iΦ = 0,

(26)

− uj0Φ
′′ −Ψ′′

j0
+ ϕj0Φ + φΨj0 + (

r
∑

i=1

uiΨi)uj0 +

r
∑

i=1

wij0Ψi

− (

r
∑

i=1

u2
i )Ψj0 − (

r
∑

i=1

uiwij0 )Φ = −3u′
j0
Φ′,

(27)
− uj0Ψ

′′
j0
+ ϕj0Ψj0 + (

r
∑

i=1

wij0Ψi)uj0 − (

r
∑

i=1

uiwij0 )Ψj0

= − 3u′
j0
((aj0 − uj0)Φ

′ +Ψ′
j0
− x̃j0Φ).

Substituting (25) into (26), we obtain

(28)

− uj0φΦ + (

r
∑

i=1

u2
i )uj0Φ−Ψ′′

j0
+ ϕj0Φ + φΨj0 +

r
∑

i=1

wij0Ψi

− (

r
∑

i=1

u2
i )Ψj0 − (

r
∑

i=1

uiwij0 )Φ = −3u′
j0
Φ′.

Multiplying (28) with uj0 and putting the equation obtained in such a way into
(27), we have

(uj0φ− (

r
∑

i=1

u2
i )uj0 − ϕj0 +

r
∑

i=1

uiwij0 )(Ψj0 − uj0Φ)(29)
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= − 3u′
j0
(aj0Φ

′ +Ψ′
j0
− x̃j0Φ).

If we apply Lemma 2.1 to the normal space T⊥
α(s)M of M , then there exists

an orthonormal frame {ea}m−1
a=r+1 of the normal space T⊥

α(s)M satisfying

〈e′a(s), eb(s)〉 = 0

for all a, b = r + 1, . . . ,m− 1. Then, we can put

(30)

α′′ = −
r

∑

i=1

uiei −
m−1
∑

a=r+1

uaea,

e′i = uiα
′ +

m−1
∑

a=r+1

〈e′i, ea〉ea,

where ua = 〈α′, e′a〉 for a = r+1, . . . ,m−1. Together with the definitions of Φ,
Ψj and (30), by straightforward computations, equation (29) can be rewritten
as

(uj0φ− (

r
∑

i=1

u2
i )uj0 − ϕj0 +

r
∑

i=1

uiwij0 )(Ψj0 − uj0Φ)(31)

= − 3u′
j0
{

m−1
∑

a=r+1

(−aj0ua + 〈e′′j0 , ea〉)ξa

+

r
∑

i=1

m−1
∑

a=r+1

〈(aj0 + uj0)e
′
i − uie

′
j0
, ea〉ηia

+

r
∑

i=1

m−1
∑

a,b=r+1

〈e′j0 , ea〉〈e′i, eb〉ea ∧ e1 ∧ · · · ∧ ei−1 ∧ eb ∧ ei+1 ∧ · · · ∧ er},

where ξa = ea∧e1∧e2∧· · ·∧er and ηia = α′∧e1∧· · ·∧ei−1∧ea∧ei+1∧· · ·∧er for
all a = r+1, . . . ,m−1. Note that the vectors ηia = α′∧e1∧· · ·∧ei−1∧ea∧ei+1∧
· · ·∧er are orthogonal to all of other vectors in (31) for all a = r+1, . . . ,m−1.
This implies that for all i = 1, 2, . . . , r and a = r + 1, . . . ,m− 1,

u′
j0
〈(aj0 + uj0)e

′
i − uie

′
j0
, ea〉 = 0.

Suppose that u′
i = 0 for all i = 1, 2, . . . , r on I2 ⊂ I1. Then, ci = 0 on I2

and hence ∂q
∂s

= 0 on I2, which is a contradiction. Thus, we may assume that
u′
j0

6= 0. Therefore, we get

(32) (aj0 + uj0)e
′
i − uie

′
j0

= aj0uiα
′

for all i = 1, 2, . . . , r and a = r + 1, . . . ,m− 1. Taking the inner product e′k to
the both sides of (32) for some k ∈ {1, 2, . . . , r}, we get

(33) (aj0 + uj0)wik − uiwj0k = aj0uiuk

for all i, k = 1, 2, . . . , r.
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Since for any i, j, wij = ai(2uj − aj), (33) implies

(34) 2aiaj0uk − aiaj0ak + 2aiuj0uk − aiakuj0 − 3aj0uiuk + aj0akui = 0

for all i, k = 1, 2, . . . , r. Making use of (21), we see that (34) can be simplified
as

aiaj0uk − aiaj0ak − aj0uiuk + aj0akui = 0

for all i, k = 1, 2, . . . , r. Since aj0 6= 0, we have

aiuk − aiak − uiuk + akui = 0,

which implies

(ai − ui)(ak − uk) = 0

for all i, k = 1, 2, . . . , r. Thus, we can see that aj = uj for all j = 1, 2, . . . , r.
Hence, wij = uiuj for all i, j = 1, 2, . . . , r by virtue of (21), which leads to
a contradiction to our assumption: q(t) 6= (1 +

∑r

i=1 uiti)
2. Therefore, we

conclude that q and ∂q
∂s

are relatively prime. This completes the proof. �

We now prove ∂q
∂s

= 0 by considering the following two cases depending on

the function q which can be expressed as q(t) 6= (1 +
∑r

i=1 uiti)
2 or q(t) =

(1 +
∑r

i=1 uiti)
2.

Case 1. Suppose that ∂q
∂s

6= 0 on an open interval I1. Let q(t) 6= (1 +
∑r

i=1 uiti)
2. By Lemma 3.4, we may put R(t) by

R(t) = q(t)B(s)

for some vector field B(s) along α.

(35)

(Φ′ +

r
∑

j=1

tjΨ
′
j)(1 +

r
∑

k=1

uktk)− (Φ +

r
∑

j=1

tjΨj)(

r
∑

k=1

x̃ktk)

= B(s)(1 +

r
∑

i=1

2uiti +

r
∑

j,i=1

wijtitj).

Considering the constant terms in (35) with respect to t, we see that

B(s) = Φ′(s).

Next, comparing the coefficients of the terms containing ti and titj for any
i and j in (35) (i, j = 1, 2, . . . , r), we have the following:

(36) Ψ′
i = uiΦ

′ + x̃iΦ,

(37) uiΨ
′
j + ujΨ

′
i − x̃iΨj − x̃jΨi = 2wijΦ

′.

Taking the inner product with Ψj to the both sides of (36), we obtain

ξji = uiz̃j + x̃iuj.
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So we get

(38)
ξji + ξij = (uiz̃j + x̃iuj) + (uj z̃i + x̃jui)

= ui(x̃j + z̃j) + uj(x̃i + z̃i).

Due to (13), (38) yields
w′

ij = uiu
′
j + uju

′
i

for i, j = 1, 2, . . . , r. Therefore, we have

(39) wij = uiuj + cij

for some constants cij and i, j = 1, 2, . . . , r.
Let er+1, er+2, . . . , em−1 be the orthogonal normal vector fields to M along

α. If we put

e′i = uiα
′ +

m−1
∑

a=r+1

〈e′i, ea〉ea,

then the constants cij are given by

cij =
m−1
∑

a=r+1

〈e′i, ea〉〈e′j , ea〉

for i, j = 1, 2, . . . , r.
Putting (39) and (36) into (37), we obtain

(40) 2cijΦ
′ = uix̃jΦ+ uj x̃iΦ− x̃iΨj − x̃jΨi.

Again, taking the inner product with Ψk to (40) for k = 1, 2, . . . , r, we have

(41) 2cij z̃k = uix̃juk + uj x̃iuk − x̃iwjk − x̃jwik

for i, j, k = 1, 2, . . . , r. By (39) and (41), we get

(42) 2cij z̃k = −cjkx̃i − cikx̃j .

Because the function q 6= (1+
∑r

i=1 uiti)
2, there must be a non-zero constant

cik defined in (39) for some i and k . If cik 6= 0, we can see easily that cii 6= 0
and ckk 6= 0. Then, by replacing j, k with i in (42), for the case cii 6= 0, we
obtain

u′
i = x̃i + z̃i = 0.

Now, we consider the case that cik = 0 for some i, k. If cii 6= 0 and ckk 6= 0,
we see easily that ui and uk are constant. Note that if ci0i0 = 0 for some i0,
then ci0k = 0 for all k = 1, 2, . . . , r. Indeed, since ci0i0 = 0, wi0i0 = u2

i0
which

implies e′i0 = ui0α
′. Then, by definition of the functions, we have wi0k = ui0uk

for all k = 1, 2, . . . , r.
So we consider the set Λ = {i | cii = 0} ⊂ {1, 2, . . . , r}. For i ∈ Λ, wik = uiuk

for all k = 1, 2, . . . , r. Then, the function q = 1 +
∑

2uiti +
∑

wijtitj can be
rewritten as

q = (1 +
∑

i∈Λ

uiti)
2 + 2

∑

i/∈Λ

uiti + 2
∑

i∈Λ

(
∑

k/∈Λ

wiktitk) +
∑

k,h/∈Λ

wkhtkth.
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Since uk and wkh are constant for k, h /∈ Λ,

∂q

∂s
= 2(1 +

∑

i∈Λ

uiti)(
∑

i∈Λ

u′
iti) + 2

∑

i∈Λ

(
∑

k/∈Λ

uku
′
ititk)

= 2(1 +

r
∑

j=1

ujtj)(
∑

i∈Λ

u′
iti).

Then, (17) implies

(43)

− 3(1 +

r
∑

j=1

ujtj)(
∑

i∈Λ

u′
iti)Φ

′

= − (Φ′′ +

r
∑

j=1

tjΨ
′′
j −

r
∑

j=1

ujΨj −
r

∑

l=1

(

r
∑

j=1

wjlΨj)tl)(1 +

r
∑

j=1

ujtj)

+ (Φ +
r

∑

j=1

tjΨj)(φ +
r

∑

j=1

ϕjtj −
r

∑

j=1

u2
j −

r
∑

l=1

(
r

∑

j=1

ujwjl)tl).

In (43), considering the constant terms with respect to t and the coefficients
of terms containing ti for i ∈ Λ, we have the following equations

(44) −Φ′′ +
r

∑

j=1

ujΨj + φΦ− (
r

∑

j=1

u2
j)Φ = 0,

(45)

−3u′
iΦ

′ =− uiΦ
′′ + (

r
∑

j=1

ujΨj)ui −Ψ′′
i +

r
∑

j=1

wijΨj

+ ϕiΦ− (

r
∑

j=1

ujwij)Φ + φΨi − (

r
∑

j=1

u2
j)Ψi.

Putting (44) into (45) and using the fact that Ψi = uiΦ for i ∈ Λ, we get

(46) −3u′
iΦ

′ = −Ψ′′
i +

r
∑

j=1

wijΨj + ϕiΦ− (

r
∑

j=1

ujwij)Φ.

From Ψi = uiΦ, we have

(47) Ψ′′
i = u′′

i Φ+ 2u′
iΦ

′ + uiΦ
′′ and ϕi = u′′

i + uiφ.

By (44) and (47), equation (46) implies

(48) u′
iΦ

′ = 0

for i ∈ Λ.
We now suppose that Φ′ ≡ 0. By definition,

Φ′ = α′′ ∧ e1 ∧ · · · ∧ er +
∑

k/∈Λ

α′ ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er.



1324 S. M. JUNG, D.-S. KIM, Y. H. KIM, AND D. W. YOON

It implies that
α′ ∧ e1 ∧ · · · ∧ e′k ∧ · · · ∧ er ∧ ek = 0

for k /∈ Λ. Therefore, the vector fields α′, e1, . . . , er, e
′
k are linearly dependent

for all s which means that e′k = ukα
′ for k /∈ Λ. But it contradicts q 6=

(1 +
∑r

i=1 uiti)
2. Therefore, by (48) we have

u′
i = 0

for i ∈ Λ.
Summing up the above results, we can see that uj are constant functions for

j = 1, 2, . . . , r and hence the functions wij are constant for all i, j = 1, 2, . . . , r
because of (39). Therefore, we can conclude that

(49)
∂q

∂s
= 0

for all s, which contradicts ∂q
∂s

6= 0 on the open interval I1.

Case 2. Suppose that the function q is of the form q(t) = (1 +
∑r

i=1 uiti)
2.

Then, we can see that wij = uiuj for all i, j = 1, 2, . . . , r and hence G = Φ.
Therefore, ∆G = fG becomes

(50)
1

2q2
∂q

∂s
Φ′ − 1

q
Φ′′ = fΦ.

Taking the inner product with Φ to the both sides of (50), we find the function
f given as

(51) f = −φ(s)

q(t)
.

Substituting f into (50) implies

(52) (

r
∑

i=1

u′
iti)Φ

′ − (1 +

r
∑

i=1

uiti)Φ
′′ = −φ(1 +

r
∑

i=1

uiti)Φ.

It follows that

(53) Φ′′ = φΦ.

By (52) and (53), we get
r

∑

i=1

u′
iΦ

′ti = 0

and hence u′
iΦ

′ = 0 for all i.
If Φ′ ≡ 0, it follows from (53) that the function φ is identically zero because

Φ is non-zero vector field for all s ∈ I. Then, the function f is also identically
zero by virtue of (51) that is a contradiction. Therefore, we have u′

i = 0 for all
i = 1, 2, . . . , r and we can conclude that

∂q

∂s
= 0

for all s ∈ I. This is a contradiction.
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According to Cases 1 and 2, we conclude from equation (12) that

∂q

∂s
= 0

for all s ∈ I. Therefore, we have:

Proposition 3.5. Let M be an (r+ 1)-dimensional non-cylindrical ruled sub-

manifold parameterized by (3) in Em with pointwise 1-type Gauss map of the

first kind. Then the functions

ui(s) = 〈α′(s), e′i(s)〉 and wij(s) = 〈e′i(s), e′j(s)〉
are constant for all i, j = 1, 2, . . . , r.

Now, we need the following lemma to examine the mean curvature of the
ruled submanifold of Em with pointwise 1-type Gauss map of the first kind:

Lemma 3.6. Let M be an n-dimensional submanifold of a Euclidean space Em

with pointwise 1-type Gauss map G of the first kind. Then, the mean curvature

vector field H is parallel in the normal bundle.

Proof. See Lemma 5.1 of [22]. �

We prove that a minimality of a non-cylindrical ruled submanifold M is
equivalent for M to have pointwise 1-type Gauss map of the first kind.

Theorem 3.7. Let M be an (r+1)-dimensional non-cylindrical ruled subman-

ifold in Em. Then, M has pointwise 1-type Gauss map G of the first kind if

and only if M is minimal.

Proof. Suppose that a ruled submanifoldM parameterized by (3) has pointwise
1-type Gauss map of the first kind. The mean curvature vector field H is given
by

(54)

H =
1

r + 1
{h( xs

||xs||
,

xs

||xs||
) +

r
∑

i=1

h(xti , xti)}

=
1

r + 1
{1
q
h(xs, xs) +

r
∑

i=1

h(ei, ei)},

where h is the second fundamental form on M . Since xtiti = 0, (54) is reduced
to

H =
1

(r + 1)q
{xss − 〈xss, xs〉xs −

r
∑

i=1

〈xss, ei〉ei}.

By straightforward computation, we get

〈xss, xs〉 =
r

∑

i,j=1

ξijtitj and 〈xss, ei〉 = −ui −
r

∑

j=1

wijtj .
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According to Proposition 3.5, wij are constant for all i, j = 1, 2, . . . , r and thus

r
∑

i,j=1

ξijtitj =
∑

i≤j

(ξij + ξji)titj = 0.

So, the mean curvature vector field H is expressed as

(55) H =
1

(r + 1)q
{α′′ +

r
∑

i=1

tie
′′
i +

r
∑

i=1

uiei +

r
∑

j=1

(

r
∑

i=1

wijei)tj},

which yields
(56)

〈H,H〉 = 1

(r + 1)2q2
{〈α′′, α′′〉 −

r
∑

k=1

u2
k + 2

r
∑

i=1

〈α′′, e′′i 〉ti − 2

r
∑

k,i=1

ukwkiti

+

r
∑

i,j=1

〈e′′i , e′′j 〉titj −
r

∑

i,j=1

(

r
∑

k=1

wikwjk)titj}.

Differentiating (56) with respect to ti0 for some i0 and using Lemma 3.6, we
have

0 =
−2

(r + 1)2q3
(
∂q

∂ti0
){〈α′′, α′′〉 −

r
∑

k=1

u2
k + 2

r
∑

i=1

〈α′′, e′′i 〉ti − 2
r

∑

k,i=1

ukwkiti

+

r
∑

i,j=1

〈e′′i , e′′j 〉titj −
r

∑

i,j=1

(

r
∑

k=1

wikwjk)titj}

+
2

(r + 1)2q2
{〈α′′, e′′i0〉 −

r
∑

k=1

ukwki0 +

r
∑

j=1

〈e′′i0 , e′′j 〉tj

−
r

∑

j=1

(

r
∑

k=1

wi0kwjk)tj},

or, equivalently,
(57)

0 =− 2(ui0 +

r
∑

j=1

wi0jtj){〈α′′, α′′〉 −
r

∑

k=1

u2
k + 2

r
∑

i=1

〈α′′, e′′i 〉ti − 2

r
∑

k,i=1

ukwkiti

+

r
∑

i,j=1

〈e′′i , e′′j 〉titj −
r

∑

i,j=1

(

r
∑

k=1

wikwjk)titj}

+ (1 +

r
∑

i=1

2uiti +

r
∑

i,j=1

wijtitj){〈α′′, e′′i0〉 −
r

∑

k=1

ukwki0

+
r

∑

j=1

〈e′′i0 , e
′′
j 〉tj −

r
∑

j=1

(
r

∑

k=1

wi0kwjk)tj}.
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Considering the coefficients of terms containing tj , t
2
j and t3j for some j =

1, 2, . . . , r in (57), we have

(58)

− 4ui0〈α′′, e′′j 〉+ 4ui0(
r

∑

k=1

ukwkj)− 2wi0j〈α′′, α′′〉+ 2wi0j(
r

∑

k=1

u2
k)

+ 〈e′′i0 , e′′j 〉 −
r

∑

k=1

wi0kwjk + 2uj〈α′′, e′′i0〉 − 2uj(

r
∑

k=1

ukwki0 ) = 0,

(59)

− 2ui0〈e′′j , e′′j 〉+ 2ui0(

r
∑

k=1

w2
jk)− 4wi0j〈α′′, e′′j 〉+ 4wi0j(

r
∑

k=1

ukwkj)

+ 2uj〈e′′i0 , e
′′
j 〉 − 2uj(

r
∑

k=1

wi0kwjk) + wjj〈α′′, e′′i0〉 − wjj(

r
∑

k=1

ukwki0 ) = 0,

(60) −2wi0j〈e′′j , e′′j 〉+ 2wi0j(

r
∑

k=1

w2
jk) + wjj〈e′′i0 , e

′′
j 〉 − wjj(

r
∑

k=1

wi0kwjk) = 0.

Since wi0i0 6= 0, by replacing j with i0 in (58), (59) and (60), we can obtain
easily

(61) 〈α′′, α′′〉 =
r

∑

k=1

u2
k, 〈α′′, e′′i0〉 =

r
∑

k=1

ukwki0 and 〈e′′i0 , e
′′
i0
〉 =

r
∑

k=1

w2
i0k

.

Equation (58) with the help of (61) yields

(62) 〈e′′i , e′′j 〉 =
r

∑

k=1

wikwjk .

Together with equations (56), (61) and (62), we conclude that the mean cur-
vature vector field H vanishes on M .

Conversely, suppose that a non-cylindrical ruled submanifold M is minimal.
The mean curvature vector field H is given by

H =
1

(r + 1)q
{xss − 〈xss, xs〉xs −

r
∑

i=1

〈xss, ei〉ei}

=
1

(r + 1)q
{α′′ +

r
∑

i=1

tie
′′
i − (

r
∑

k,j=1

ξkjtktj)(α
′ +

r
∑

i=1

tie
′
i)

+

r
∑

i=1

(ui +

r
∑

j=1

wijtj)ei},

from which, H = 0 implies

α′′ = −
r

∑

i=1

uiei, e′′i = −
r

∑

j=1

wjiej and ξkj = 0
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for all i, j, k = 1, . . . , r. It follows that

u′
i = 〈α′′, e′i〉+ 〈α′, e′′i 〉 = 0.

Therefore, we see that ui and wij are constant functions for all i, j = 1, . . . , r

which means that ∂q
∂s

= 0 on M .
By straightforward computation, we get

Φ′′ +

r
∑

i=1

Ψ′′
i ti =

1

2

r
∑

k=1

∂q

∂tk
Ψk −

r
∑

k=1

wkk(Φ +

r
∑

i=1

Ψiti).

Then, by using terms in (12), we have

∆G =
1

q5/2
{q

r
∑

k=1

wkk − 1

2

r
∑

k=1

(
∂q

∂tk
)2 +

1

2
q

r
∑

k=1

∂2q

∂t2k
}(Φ +

r
∑

i=1

Ψiti),

which is reduced to

∆G = fG

for some function

f =
1

q2
{q

r
∑

k=1

wkk − 1

2

r
∑

k=1

(
∂q

∂tk
)2 +

1

2
q

r
∑

k=1

∂2q

∂t2k
}.

Therefore, a minimal non-cylindrical ruled submanifold has pointwise 1-type
Gauss map of the first kind. It completes the proof. �

Thus, combining Theorem 3.2, Theorem 3.7 and the result on generalized
helicoid in [1], we have:

Theorem 3.8 (Classification). The only ruled submanifold M of Euclidean

space Em with pointwise 1-type Gauss map of the first kind is an open part of

a generalized circular cylinder Σa × Er−1 or a generalized helicoid.

Combining the result of [9] with Theorem 3.7, we have:

Theorem 3.9. Let M be a non-cylindrical ruled submanifold of Em. Then,

the following are equivalent:
(1) M is minimal.

(2) M is a generalized helicoid.

(3) M is a finite type submanifold.

(4) M has pointwise 1-type Gauss map of the first kind.
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