• Title/Summary/Keyword: Euclidean

Search Result 1,106, Processing Time 0.021 seconds

ON THE LARGE DEVIATION PROPERTY OF RANDOM MEASURES ON THE d-DIMENSIONAL EUCLIDEAN SPACE

  • Hwang, Dae-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.71-80
    • /
    • 2002
  • We give a formulation of the large deviation property for rescalings of random measures on the d-dimensional Euclidean space R$^{d}$ . The approach is global in the sense that the objects are Radon measures on R$^{d}$ and the dual objects are the continuous functions with compact support. This is applied to the cluster random measures with Poisson centers, a large class of random measures that includes the Poisson processes.

Conformally flat cosymplectic manifolds

  • Kim, Byung-Hak;Kim, In-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.999-1006
    • /
    • 1997
  • We proved that if a fibred Riemannian space $\tilde{M}$ with cosymplectic structure is conformally flat, then $\tilde{M}$ is the locally product manifold of locally Euclidean spaces, that is locally Euclidean. Moreover, we investigated the fibred Riemannian space with cosymplectic structure when the Riemannian metric $\tilde{g}$ on $\tilde{M}$ is Einstein.

  • PDF

TUBES OF FINITE CHEN-TYPE

  • Al-Zoubi, Hassan;Jaber, Khalid M.;Stamatakis, Stylianos
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.581-590
    • /
    • 2018
  • In this paper, we consider surfaces in the 3-dimensional Euclidean space $\mathbb{E}^3$ which are of finite III-type, that is, they are of finite type, in the sense of B.-Y. Chen, corresponding to the third fundamental form. We present an important family of surfaces, namely, tubes in $\mathbb{E}^3$. We show that tubes are of infinite III-type.

A NEW TYPE OF TUBULAR SURFACE HAVING POINTWISE 1-TYPE GAUSS MAP IN EUCLIDEAN 4-SPACE 𝔼4

  • Kisi, Ilim;Ozturk, Gunay
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.923-938
    • /
    • 2018
  • In this paper, we handle the Gauss map of a tubular surface which is constructed according to the parallel transport frame of its spine curve. We show that there is no tubular surface having harmonic Gauss map. Moreover, we give a complete classification of this kind of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space ${\mathbb{E}}^4$.

Improved Modular Inversion over GF(p)

  • Choi, Jong-Hwa;Kim, Yong-Dae;Ahn, Young-Il;You, Young-Gap
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.40-43
    • /
    • 2007
  • This paper proposed a new modular inverse algorithm based on the right-shifting binary Euclidean algorithm. For an n-bit numbers, the number of operations for the proposed algorithm is reduced about 61.3% less than the classical binary extended Euclidean algorithm. The proposed algorithm implementation shows substantial reduction in computation time over Galois field GF(p).

Optimal Straight Line Path of a Moving Facility (이동설비의 최적 직선 경로)

  • Sherali, Hanif D.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.72-79
    • /
    • 1989
  • In this paper we consider the problem of finding an optimal straight line path of moving facility which interacts with a set of existing facilities fixed within a given rectangular area. We present a simple algorithm for rectilinear metric which greatly improves the pervious method and also propose algorithms for Euclidean and squared Euclidean distances.

  • PDF

Totally umbilic lorentzian surfaces embedded in $L^n$

  • Hong, Seong-Kowan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.9-17
    • /
    • 1997
  • Define $\bar{g}{\upsilon, \omega) = -\upsilon_1\omega_1 + \cdots + \upsilon_n\omega_n$ for $\upsilon, \omega in R^n$. $R^n$ together with this metric is called the Lorentzian n-space, denoted by $L^n$, and $R^n$ together with the Euclidean metric is called the Euclidean n-space, denoted by $E^n$. A Lorentzian surface in $L^n$ means an orientable connected 2-dimensional Lorentzian submanifold of $L^n$ equipped with the induced Lorentzian metrix g from $\bar{g}$.

  • PDF

SPECIAL CLASSES OF MERIDIAN SURFACES IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE

  • GANCHEV, GEORGI;MILOUSHEVA, VELICHKA
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.2035-2045
    • /
    • 2015
  • Meridian surfaces in the Euclidean 4-space are two-dimensional surfaces which are one-parameter systems of meridians of a standard rotational hypersurface. On the base of our invariant theory of surfaces we study meridian surfaces with special invariants. In the present paper we give the complete classification of Chen meridian surfaces and meridian surfaces with parallel normal bundle.

EFFICIENT ALGORITHM FOR FINDING THE INVERSE AND THE GROUP INVERSE OF FLS $\gamma-CIRCULANT$ MATRIX

  • JIANG ZHAO-LIN;XU ZONG-BEN
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.45-57
    • /
    • 2005
  • An efficient algorithm for finding the inverse and the group inverse of the FLS $\gamma-circulant$ matrix is presented by Euclidean algorithm. Extension is made to compute the inverse of the FLS $\gamma-retrocirculant$ matrix by using the relationship between an FLS $\gamma-circulant$ matrix and an FLS $\gamma-retrocirculant$ matrix. Finally, some examples are given.

사영기하학과 르네상스 미술

  • 계영희
    • Journal for History of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.59-68
    • /
    • 2003
  • Mathematics and arts are reflection of the spirit of the ages, since they have human inner parallel vision. Therefore, in ancient Greek ages, the artists' cannon was actually geometric ratio, golden section. However, in middle ages, the Euclidean Geometry was disappeared according to the Monastic Mathematics, then the art was divided two categories, one was holy Christian arts and the other was secular arts. In this research, we take notice of Renaissance Painting and Perspective Geometry, since Perspective Geometry was influenced by Renaissance notorious painter, Massccio, Leonardo and Raphael, etc. They drew and painted works by mathematical principles, at last, reformed the paradigm of arts. If we can say Euclidean Geometry is tactile geometry, the Perspective Geometry can be called by visual geometry.

  • PDF