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A NEW TYPE OF TUBULAR SURFACE HAVING

POINTWISE 1-TYPE GAUSS MAP IN EUCLIDEAN

4-SPACE E4

İlim Kişi and Günay Öztürk

Abstract. In this paper, we handle the Gauss map of a tubular surface
which is constructed according to the parallel transport frame of its spine

curve. We show that there is no tubular surface having harmonic Gauss

map. Moreover, we give a complete classification of this kind of tubular
surface having pointwise 1-type Gauss map in Euclidean 4-space E4.

1. Introduction

The term of finite type immersions is presented by Chen, and then the same
author writes some papers related to this topic [15, 16]. If a submanifold M
is given in Euclidean m-space Em, and if an isometric immersion x : M →
Em, also known as the position vector field of M , is written as a finite sum of
eigenvectors of the Laplacian ∆ of M for a constant map x0, and non-constant
maps x1, x2, . . . , xk, i.e.,

x = x0 +

k∑
i=1

xi,

then x is called as a finite type. Here, ∆x = λixi, λi ∈ R, 1 ≤ i ≤ k. If the
numbers λi’s are different from each other, then the submanifold is called as
k-type [14].

This term is extended to the Gauss map of M as

(1) ∆G = a(G+ C)

for a real number a and a constant vector C by Chen and Piccinni in [18]. In
this respect, a submanifold satisfying (1) is said to have 1-type Gauss map G.
Then many papers have been written about submanifolds having 1-type Gauss
map G [7–9,26].
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Afterwards, in (1), the real number a is replaced with a non-constant func-
tion λ. That is, the equation (1) becomes

(2) ∆G = λ(G+ C).

A submanifold satisfying (2) is said to have pointwise 1-type Gauss map G.
If the function λ is non-constant, the pointwise 1-type Gauss map is called as
proper. Also, if the vector C is zero, the pointwise 1-type Gauss map is called
as the first kind. Otherwise, second kind [17].

Surfaces satisfying (2) have been the subject of many studies such as [1–4,
19–21, 27, 28, 32, 35]. In recent years, authors deal with the meridian surfaces
with pointwise 1-type Gauss map in some spaces in [5, 6]. Also, authors study
the tubular surfaces with pointwise 1-type Gauss map according to the Frenet
frame in Euclidean 4-space in [30].

When a space curve γ (u), a spine curve, is given, we can define a canal
surface as the envelope of a one-parameter family of spheres whose centers are
the points of the spine curve γ (u) and whose radii r(u) are varying. If the
radius function r(u) is constant, the canal surface is called as a tubular (tube)
or a pipe surface. Actually, the notion of a canal surface is a generalization of
an offset of a plane curve. In [22] and [23], the analysis and algebraic features
of offset curves are discussed thoroughly. In [12, 33], authors consider canal
surfaces in Euclidean spaces. Also in [31], authors study canal surfaces with
parallel transport frame in E4.

In this paper, we handle tubular surface, constructed to parallel transport
frame of its spine curve, with respect to its Gauss map in E4. We show that
there is no tubular surface having harmonic Gauss map, and we give a com-
plete classification of tubular surface having pointwise 1-type Gauss map in
Euclidean 4-space E4.

2. Basic concepts

Let γ = γ(u) : I → E4 be a unit speed curve in the Euclidean space E4

for an interval I in R. Then the derivatives of the Frenet frame vectors of γ
(Frenet-Serret formula) are as follows:

T ′

N ′

B′1
B′2

 =


0 κ 0 0
−κ 0 τ 0
0 −τ 0 σ
0 0 −σ 0




T
N
B1

B2

 ,
where {T,N,B1, B2} is the Frenet frame of γ, and κ, τ , and σ are principal
curvature functions according to Frenet frame of the curve γ, respectively.

Definition ([34]). A family of curves with constant curvature but non-constant
torsion is called Salkowski curves.
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Frenet-Serret frame gives way to the study of curves in classical differen-
tial geometry in Euclidean space. However, the Frenet frame cannot be con-
structed at the points in which curvature vanishes. Hence, an alternative frame
is needed. In [10], Bishop defines a new frame for a curve and calls it Bishop
frame, which is well defined even if the curve’s second derivative vanishes in 3-
dimensional Euclidean space. In [10,25] the advantages of the Bishop frame and
the comparison of Bishop frame with the Frenet frame are given in Euclidean
3-space.

Euclidean 4-space E4 has the same problem as Euclidean 3-space. That
is, one of the i-th (1 < i < 4) derivatives of the curve may be zero. In [24],
using the similar idea, authors consider such curves and construct an alternative
frame. They give parallel transport frame of a curve and introduce the relations
between the frame and Frenet frame of the curve in E4. They generalize the
notion which is well known in Euclidean 3-space for 4-dimensional Euclidean
space E4.

In [24], authors use the tangent vector T (u) and three relatively parallel
vector fields M1(u), M2(u), and M3(u) to construct an alternative frame. They
call this frame a parallel transport frame along the curve γ. Then they give
the following theorem for the parallel transport frame:

Theorem 2.1 ([24]). Let {T,N,B1, B2} be a Frenet frame along a unit speed
curve γ = γ(u) : I → E4 and {T,M1,M2,M3} denotes the parallel transport
frame of the curve γ. The relation may be expressed as

T = T (u),

N = cos θ(u) cosψ(u)M1+(− cosφ(u) sinψ(u) + sinφ(u) sin θ(u) cosψ(u))M2

+ (sinφ(u) sinψ(u) + cosφ(u) sin θ(u) cosψ(u))M3,

B1 = cos θ(u) sinψ(u)M1 + (cosφ(u) cosψ(u) + sinφ(u) sin θ(u) sinψ(u))M2

+ (− sinφ(u) cosψ(u) + cosφ(u) sin θ(u) sinψ(u))M3,

B2 = − sin θ(u)M1 + sinφ(u) cos θ(u)M2 + cosφ(u) cos θ(u)M3.

The alternative parallel frame equations are
T ′

M ′1
M ′2
M ′3

 =


0 k1 k2 k3

−k1 0 0 0
−k2 0 0 0
−k3 0 0 0




T
M1

M2

M3

 ,
where k1, k2, k3 are principal curvature functions according to parallel transport
frame of the curve γ and their expressions as follows:

k1 = κ cos θ cosψ,

k2 = κ(− cosφ sinψ + sinφ sin θ cosψ),

k3 = κ(sinφ sinψ + cosφ sin θ cosψ),
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where θ′ = σ√
κ2+τ2

, ψ′ = −τ − σ
√
σ2−θ′2√
κ2+τ2

, φ′ = −
√
σ2−θ′2
cos θ and the following

equalities

κ (u) =
√
k2

1 + k2
2 + k2

3,

τ (u) = −ψ′ + φ′ sin θ,

σ (u) =
θ′

sinψ
,

φ′ cos θ + θ′ cotψ = 0

hold.

Given a regular surface M in E4 with the parametrization X(u, v) : (u, v) ∈
D ⊂ E2, at any point p = X(u, v), the vectors Xu and Xv span the tangent
space of M . Then the first fundamental form’s coefficients are computed as

(3) E = 〈Xu, Xu〉, F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 .

Here, 〈, 〉 is the Euclidean dot product. For the regularity of the surface patch
X(u, v), W 2 = EG− F 2 6= 0.

At any point p in M , there is a decomposition TpE4 = TpM ⊕ T⊥p M , where

T⊥p M is the orthogonal component of TpM in E4. Let ∇̃ be the Riemannian

connection of E4. Then the induced Riemannian connection on M for any given
local vector fields X, Y tangent to M is defined as

∇XY = (∇̃XY )T ,

where T represents the tangential component.
Let χ(M) and χ⊥(M) be the spaces of the smooth vector fields tangent and

normal to M , respectively. The second fundamental map is defined as follows:

(4) h : χ(M)× χ(M)→ χ⊥(M), h(X,Y ) = ∇̃XY −∇XY.

This map is well-defined, bilinear, and symmetric. The equation (4) is known
as the Gauss equation.

For each X ∈ χ(M) and ξ ∈ χ⊥(M), the shape operator of M is defined as

A : χ⊥(M)× χ(M)→ χ(M)

AξX = −(∇̃Xξ)T = −∇̃Xξ +∇⊥Xξ,(5)

where Aξ is the shape operator tensor and ∇⊥ is the normal connection be-
longing to χ⊥(M). For any X,Y ∈ χ(M),

(6) 〈AξX,Y 〉 = 〈h(X,Y ), ξ〉

holds. The operator Aξ is self-adjoint and bilinear. The equation (5) is known
as the Weingarten equation [13]. Thus, the coefficients of the second funda-
mental forms of M can be defined as follows:

(7) hkij = 〈h(Xi, Xj), Nk〉 , 1 ≤ k ≤ 2,
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where Xi and Xj are the orthonormal vectors of TpM [13].
The shape operator matrix corresponded to normal vector Nk of M is given

as

ANk
=

[
hk11 hk12

hk12 hk22

]
[11]. The Gaussian curvature and the mean curvature vector of M are given as

(8) K = det (AN1
) + det (AN2

)

and

(9)
−→
H =

1

2
{iz (AN1)N1 + iz (AN2)N2} ,

respectively [13].
Now, let us recall some basic concepts of the Gauss map of M in Em. The

Grassmannian manifold, G (n,m), consists of all oriented n-planes through
the origin of Em and the vector space ∧nEm, obtained by the exterior prod-
uct of n-vectors in Em, can be defined as an Euclidean space EN , where
N = (mn ). In the light of this information, we can define the Gauss map.
Let {e1, e2, . . . , en, en+1, . . . , em} be an orthonormal frame field in Em such
that the first n vectors are tangent and the others are normal to M , re-
spectively. The map G : M → G (n,m) ⊂ EN , which is defined as G (p) =
(e1 ∧ e2 ∧ · · · ∧ en) (p), is called as Gauss map of M . This map is smooth and
assigns a point p into an oriented n-plane in Em by parallel translating the
tangent space of M at p in Em.

The Laplacian ∆ϕ of a real function ϕ on M is defined as

∆ϕ = −
∑
i

(
∇̃ei∇̃eiϕ− ∇̃∇ei

eiϕ
)
.

3. Tubular surfaces having pointwise 1-type Gauss map in E4

Let γ(u) = (f1(u), f2(u), f3(u), f4 (u)) be a curve parametrized by arclength,
and {T,M1,M2,M3} is the parallel transport frame of the curve. Then the
canal surface according to the parallel transport frame is given as

(10) M : X(u, v) = γ(u) + r(u) (M2(u) cos v +M3(u) sin v) .

Now, we consider the surface M in (10) as a tubular surface. Then its para-
metrization is given as

(11) M : X (u, v) = γ (u) + r (M2(u) cos v +M3(u) sin v) ,

where r is a real constant. For the vector fields X1, X2 are tangent and N1, N2

are normal to M , we can choose an orthonormal frame {X1, X2, N1, N2} given
as follows:

X1 =
Xu

‖Xu‖
= T,
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X2 =
Xv

‖Xv‖
= − (sin v)M2 + (cos v)M3,(12)

N1 =
M1 + (cos v)M2 + (sin v)M3√

2
,

N2 =
M1 − (cos v)M2 − (sin v)M3√

2
.

Moreover, by differentiating (12) covariantly with respect to X1 and X2, we
obtain the following derivative formulas:

∇̃X1X1 = a1X2 + a2N1 + a3N2,

∇̃X1
X2 = −a1X1,

∇̃X1
N1 = −a2X1,

∇̃X1N2 = −a3X1,(13)

∇̃X2
X1 = 0,

∇̃X2
X2 = − 1√

2r
N1 +

1√
2r
N2,

∇̃X2
N1 =

1√
2r
X2,

∇̃X2N2 = − 1√
2r
X2.

Here,

a1 (u, v) =
k3 (u) cos v − k2 (u) sin v

f (u, v)
,

a2 (u, v) =
k1 (u) + k2 (u) cos v + k3 (u) sin v√

2f (u, v)
,(14)

a3(u, v) =
k1 (u)− k2 (u) cos v − k3 (u) sin v√

2f (u, v)
,

and f = f (u, v) = 1− k2 (u) r cos v − k3 (u) r sin v are differentiable functions.
From the equation (6) and (7), the second fundamental form’s coefficients

become

(15) hkij = 〈h (Xi, Xj) , Nk〉 = 〈ANk
Xi, Xj〉 , 1 ≤ i, j, k ≤ 2.

By considering the equations (5), (13), and (15), we obtain the coefficients

h1
11 = a2, h

1
12 = 0, h1

22 = − 1√
2r
,(16)

h2
11 = a3, h

2
12 = 0, h2

22 =
1√
2r
.

By means of (16), we can give the following lemma, which is a special case of
Proposition 9 in the paper [29].
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Lemma 3.1 ([29]). Let M be a tubular surface given with the parametrization
(11) in E4. Then the shape operator matrices are given as follows:

AN1
=

[
a2 0
0 − 1√

2r

]
, AN2

=

[
a3 0
0 1√

2r

]
.

In the following corollary, we obtain the results which are given in [29] with
a different calculation method.

Corollary 3.2 ([29]). Let M be a tubular surface given with the parametriza-
tion (11) in E4. The Gaussian and the mean curvatures of M are respectively
given as

K =
f − 1

fr2

and

H =
1

2fr

(
4f2 − 4f + r2k2

1 + 1
) 1

2 .

Proof. Considering f (u, v) = 1− k2r cos v − k3r sin v and (14), we can write

(17) a2 (u, v) =
k1r + 1− f√

2fr
and a3 (u, v) =

k1r − 1 + f√
2fr

.

From the formulas (8) and (9),

K = det (AN1
) + det (AN2

)

= − a2√
2r

+
a3√
2r

= −k1r + 1− f
2fr2

+
k1r − 1 + f

2fr2

=
f − 1

fr2
,

and
−→
H =

1

2
{iz(AN1)N1 + iz (AN2)N2}

=
1

2

{(
k1r + 1− f√

2fr
− 1√

2r

)
N1 +

(
k1r − 1 + f√

2fr
+

1√
2r

)
N2

}
=

1

2
√

2fr
{(k1r + 1− 2f)N1 + (k1r − 1 + 2f)N2} .

Taking the norm of the last equation, we get the expected mean curvature. �

The Gauss map of a given surface M in E4 is defined as G = X1∧X2. Using
the equations (13) and a direct computation, we get the Laplacian of the Gauss
map as follows:

∆G =

(
a2

2 + a2
3 +

1

r2

)
X1 ∧X2
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+

(
−a1a2 −

a1√
2r

)
X1 ∧N1

+

(
−a1a3 +

a1√
2r

)
X1 ∧N2(18)

+ (X1 [a2])X2 ∧N1

+ (X1 [a3])X2 ∧N2,

where X1 [ai] (i = 2, 3) is the covariant derivative with respect to X1.
From the equation (18), we can give the following result:

Corollary 3.3. There is no tubular surface having harmonic Gauss map.

Proof. Suppose the surface M has harmonic Gauss map, i.e., ∆G = 0. From
(18), we have a2

2 + a2
3 + 1

r2 = 0, a contradiction. Therefore, there is no tubular
surface having harmonic Gauss map. �

Now, we assume that the tubular surface M , given with the parametrization
(11), has pointwise 1-type Gauss map. From (2) and (18), the equations

λ+ λ 〈C,X1 ∧X2〉 = a2
2 + a2

3 +
1

r2
,

λ 〈C,X1 ∧N1〉 = −a1a2 −
a1√
2r
,

λ 〈C,X1 ∧N2〉 = −a1a3 +
a1√
2r
,

λ 〈C,X2 ∧N1〉 = X1 [a2] ,

λ 〈C,X2 ∧N2〉 = X1 [a3]

hold. Here, λ is a non-zero smooth function. Thus, we obtain

(19) λ 〈C,N1 ∧N2〉 = 0.

Differentiating (19) covariantly with respect to X1 and X2, we get

− a1√
2rλ

(a2 + a3) = 0,(20)

X1 [a2] +X1 [a3]

λ
= 0.

Equations (20) allude to one of the three cases:
i) a3 = −a2 and a1 6= 0,
ii) a3 = −a2 and a1 = 0,
iii) X1 [a2 + a3] = 0 (a3 6= −a2) and a1 = 0.
From now on, we will cover the above three cases and obtain some results

on tubular surfaces satisfying (2).
Case i) Let a3 = −a2 and a1 6= 0. Then k1 = 0. From (2) and (18), we

have

C =

(
2a2

2

λ
+

1

r2λ
− 1

)
X1 ∧X2
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+

(
−a1a2

λ
− a1√

2rλ

)
X1 ∧N1

+

(
a1a2

λ
+

a1√
2rλ

)
X1 ∧N2(21)

+

(
X1 [a2]

λ

)
X2 ∧N1

+

(
X1 [−a2]

λ

)
X2 ∧N2.

a) Assume that M has pointwise 1-type Gauss map of the first kind, i.e.,

C = 0. Then we have a1a2
λ + a1√

2rλ
= 0, which implies a1

(√
2ra2 + 1

)
= 0.

Since a1 6= 0, we get a2 = − 1√
2r

. In the equations (17), using k1 = 0, we

obtain a2 = 1−f√
2fr

, which is a contradiction. Thus, there is no tubular surface

having pointwise 1-type Gauss map of the first kind.

Theorem 3.4. There is no tubular surface M given with the parametrization
(11) having pointwise 1-type Gauss map of the first kind such that a3 = −a2

and a1 6= 0 in E4.

b) Assume that M has pointwise 1-type Gauss map of the second kind, i.e.,
C 6= 0. By the use of (13) and (21), we get

∇̃X1
C =

{
X1

[
2a22
λ + 1

r2λ − 1
]

+ 2a2
X1[a2]
λ

}
X1 ∧X2

+
{
X1

[
−a1a2λ − a1√

2rλ

]
− a1

X1[a2]
λ

}
X1 ∧N1

+
{
X1

[
a1a2
λ + a1√

2rλ

]
+ a1

X1[a2]
λ

}
X1 ∧N2(22)

+
{
X1

[
X1[a2]
λ

]
− a1

(
a1a2
λ + a1√

2rλ

)
− a2

(
2a22
λ + 1

r2λ − 1
)}

X2 ∧N1

+
{
X1

[
X1[−a2]

λ

]
+ a1

(
a1a2
λ + a1√

2rλ

)
+ a2

(
2a22
λ + 1

r2λ − 1
)}

X2 ∧N2

= 0

and

∇̃X2
C =

{
X2

[
2a22
λ + 1

r2λ − 1
]
−
√

2
r

(
a1a2
λ + a1√

2rλ

)}
X1 ∧X2

+
{
X2

[
−a1a2λ − a1√

2rλ

]
− 1√

2r

(
2a22
λ + 1

r2λ − 1
)}

X1 ∧N1

+
{
X2

[
a1a2
λ + a1√

2rλ

]
+ 1√

2r

(
2a22
λ + 1

r2λ − 1
)}

X1 ∧N2

+
{
X2

[
X1[a2]
λ

]}
X2 ∧N1(23)

+
{
X2

[
X1[−a2]

λ

]}
X2 ∧N2

= 0.
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From (23), X2

[
X1[a2]
λ

]
= 0, namely

(24) −λfuvf3 + fu
(
λvf

3 + 3λf2fv
)

= 0.

Again considering C is constant, from (23), we can write the differential equa-
tion system

X2

[
2a2

2

λ
+

1

r2λ
− 1

]
−
√

2

r

(
a1a2

λ
+

a1√
2rλ

)
= 0,

X2

[
a1a2

λ
+

a1√
2rλ

]
+

1√
2r

(
2a2

2

λ
+

1

r2λ
− 1

)
= 0,

which has the solution

2a2
2

λ
+

1

r2λ
− 1 = m1 (u) cos v +m2 (u) sin v,

a1a2

λ
+

a1√
2rλ

= m3 (u) cos v +m4 (u) sin v,(25)

where mi (u) , 1 ≤ i ≤ 4 are differentiable functions. From (22), we have

X1 [a2]

λ
= − 1

a1
X1

[
a1a2

λ
+

a1√
2rλ

]
,(26)

X1 [a2]

λ
= − 1

2a2
X1

[
2a2

2

λ
+

1

r2λ
− 1

]
.

Further, substituting (25) in (26), we get(
m′3
a1
− m′1

2a2

)
cos v +

(
m′4
a1
− m′2

2a2

)
sin v = 0,

and so

(27) m′3 =
a1

2a2
m′1, and m′4 =

a1

2a2
m′2.

Lastly, from the equation (22), we have

(28) X1

[
X1 [a2]

λ

]
= a1

(
a1a2

λ
+

a1√
2rλ

)
+ a2

(
2a2

2

λ
+

1

r2λ
− 1

)
.

Substituting the value of X1

[
X1[a2]
λ

]
and (25) in (28), we obtain

− fuuf2λ+ fu
(
λuf

2 + 3λffu
)

(29)

=
√

2r ((a1m3 + a2m1) cos v + (a1m4 + a2m2) sin v) .

Then we give Theorem 3.5.

Theorem 3.5. Let M be a tubular surface given with the parametrization (11)
in E4 such that a3 = −a2 and a1 6= 0. Then M has pointwise 1-type Gauss
map of the second kind if and only if the equations (24), (25), (27), and (29)
hold.
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Case ii) Let a3 = −a2 and a1 = 0. Then k1 = 0. Since a1 = 0, from the
equations (14), we have

(30)
k3 (u)

k2 (u)
= tan v = c, c = constant,

which is satisfied only on the points of the u-parameter curves of M . From (2)
and (18), we can write

C =

(
2a2

2

λ
+

1

r2λ
− 1

)
X1 ∧X2

+

(
X1 [a2]

λ

)
X2 ∧N1(31)

+

(
X1 [−a2]

λ

)
X2 ∧N2.

a) First, assume that M has pointwise 1-type Gauss map of the first kind,
i.e., C = 0. Then considering the coefficients of X2 ∧N1, X2 ∧N2 and a1 = 0,
we get

X1 [a2] = 0⇐⇒ k′2 cos v + k′3 sin v = 0,

which means that the curvature functions k2 6= 0 and k3 6= 0 are constants.
Moreover, since k1 is zero, the first curvature κ of the spine curve is constant,
where τ and σ do not need to be constant. Thus, the spine curve γ is a
Salkowski curve in E4.

Thus, we can give Theorem 3.6:

Theorem 3.6. Let M be a tubular surface given with the parametrization (11)
in E4 such that a3 = −a2 and a1 = 0. If M has pointwise 1-type Gauss map of
the first kind, the spine curve γ is a Salkowski curve. Here, M has a non-proper
1-type Gauss map with the constant function λ = 2a2

2 + 1
r2 .

b) Now, assume that M has pointwise 1-type Gauss map of the second
kind, i.e., C 6= 0. Differentiating (31) covariantly with respect to X1, X2, and
considering C is constant, we get

∇̃X1
C =

{
X1

[
2a2

2

λ
+

1

r2λ
− 1

]
+ 2a2

X1 [a2]

λ

}
X1 ∧X2

+

{
X1

[
X1 [a2]

λ

]
− a2

(
2a2

2

λ
+

1

r2λ
− 1

)}
X2 ∧N1

+

{
X1

[
X1 [−a2]

λ

]
+ a2

(
2a2

2

λ
+

1

r2λ
− 1

)}
X2 ∧N2(32)

= 0

and

∇̃X2
C =

{
X2

[
2a2

2

λ
+

1

r2λ
− 1

]}
X1 ∧X2
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− 1√
2r

(
2a2

2

λ
+

1

r2λ
− 1

)
X1 ∧N1

+
1√
2r

(
2a2

2

λ
+

1

r2λ
− 1

)
X1 ∧N2(33)

+

{
X2

[
X1 [a2]

λ

]}
X2 ∧N1

+

{
X2

[
X1 [−a2]

λ

]}
X2 ∧N2

= 0.

From (32) and (33), we get

2a2
2

λ
+

1

r2λ
− 1 = 0

and

X1

[
X1 [a2]

λ

]
= X2

[
X1 [a2]

λ

]
= a2

X1 [a2]

λ
= 0.

Then we have X1 [a2] = 0, where a2 6= 0. Thus,

X1 [a2] = k′2 cos v + k′3 sin v = 0,

which implies M has pointwise 1-type Gauss map of the first kind.

Theorem 3.7. There is no tubular surface M given with the parametrization
(11) having pointwise 1-type Gauss map of the second kind such that a3 = −a2

and a1 = 0 in E4.

Case iii) Let X1 [a2 + a3] = 0 (a3 6= −a2) and a1 = 0. As in the second case,
this case exists only on the points of the u-parameter curves of M . Moreover,
from the assumption, we have

(34) X1 [a2 + a3] = X1

[√
2k1

f

]
= 0⇐⇒ k′1f − k1fu = 0.

Using the equations (2) and (18), we can write

C =

(
a2

2 + a2
3

λ
+

1

r2λ
− 1

)
X1 ∧X2

+

(
X1 [a2]

λ

)
X2 ∧N1(35)

+

(
X1 [a3]

λ

)
X2 ∧N2.

a) First, assume that M has pointwise 1-type Gauss map of the first kind,
i.e., C = 0. Then all of the coefficients of C must vanish. It is enough to have
a look at the second coefficient of C. Using (17) and (34), we get

X1 [a2] = 0⇐⇒ k′1rf − k1rfu − fu = 0
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⇐⇒ fu = 0

⇐⇒ k′2 cos v + k′3 sin v = 0,

which means the curvature functions k2 6= 0 and k3 6= 0 are constants. From
the equation (34), we get that k1 is constant, too. Thus, the curvature function
κ is constant, where τ and σ do not need to be constant. Hence, the spine curve
γ is a Salkowski curve.

To sum up, we can give Theorem 3.8:

Theorem 3.8. Let M be a tubular surface given with the parametrization
(11) in E4 such that X1 [a2 + a3] = 0 (a3 6= −a2) and a1 = 0. Then M has
pointwise 1-type Gauss map of the first kind if and only if the spine curve γ is
a Salkowski curve, and the Gauss map is non-proper with the constant function
λ = a2

2 + a2
3 + 1

r2 .

b) Now, assume that M has pointwise 1-type Gauss map of the second kind,
i.e., C 6= 0. As in the other cases, differentiating (35) covariantly with respect
to X1, X2 and considering C is constant, we get

∇̃X1C =

{
X1

[
a2

2 + a2
3

λ
+

1

r2λ
− 1

]
+
a2X1 [a2]

λ
+
a3X1 [a3]

λ

}
X1 ∧X2

+

{
X1

[
X1 [a2]

λ

]
− a2

(
a2

2 + a2
3

λ
+

1

r2λ
− 1

)}
X2 ∧N1

+

{
X1

[
X1 [a3]

λ

]
− a3

(
a2

2 + a2
3

λ
+

1

r2λ
− 1

)}
X2 ∧N2(36)

= 0

and

∇̃X2C =

{
X2

[
a2

2 + a2
3

λ
+

1

r2λ
− 1

]}
X1 ∧X2

− 1√
2r

(
a2

2 + a2
3

λ
+

1

r2λ
− 1

)
X1 ∧N1

+
1√
2r

(
a2

2 + a2
3

λ
+

1

r2λ
− 1

)
X1 ∧N2(37)

+

{
X2

[
X1 [a2]

λ

]}
X2 ∧N1

+

{
X2

[
X1 [a3]

λ

]}
X2 ∧N2

= 0.

From (36) and (37), we obtain

a2
2 + a2

3

λ
+

1

r2λ
− 1 = 0,
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X1

[
X1 [a2]

λ

]
= X2

[
X1 [a2]

λ

]
= −X1

[
X1 [a3]

λ

]
= −X2

[
X1 [a3]

λ

]
= 0,

and

(38)
a2X1 [a2]

λ
+
a3X1 [a3]

λ
= 0.

From the assumption, we can write (38) as:

a2X1 [a2]− a3X1 [a2] = X1 [a2] (a2 − a3) = 0.

Here, either a2 = a3 or X1 [a2] = 0. If a2 = a3, considering X1 [a2] = −X1 [a3] ,
we get X1 [a2] = 0, which means M has a pointwise 1-type Gauss map of the
first kind. Thus, there is no tubular surface having pointwise 1-type Gauss
map of the second kind.

Theorem 3.9. There is no tubular surface M given with the parametriza-
tion (11) having pointwise 1-type Gauss map of the second kind such that
X1 [a2 + a3] = 0 (a3 6= −a2) and a1 = 0 in E4.
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