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ON THE LARGE DEVIATION PROPERTY
OF RANDOM MEASURES
ON THE dJd-DIMENSIONAL EUCLIDEAN SPACE

DAE Sik HwANG

ABSTRACT. We give a formulation of the large deviation property
for rescalings of random measures on the d-dimensional Euclidean
space RY. The approach is global in the sense that the objects are
Radon measures on R? and the dual objects are the continuous
functions with compact support. This is applied to the cluster
random measures with Poisson centers, a large class of random
measures that includes the Poisson processes.

1. Introduction and preliminaries

Crameér presented the first large deviation property at a probabil-
ity symposium in 1937. Since 1937, this property has undergone an
extensive development and this original work was extended in various
directions. There have been many developments in the large deviation
property over the last two decades. For more details about the large
deviation property, the reader is referred to Ellis (1985), Deuschel and
Stroock (1989).

Let B? denote the collection of Borel subsets of d-dimensional Eu-
clidean space R%. The space M(R?) (denoted by M, later)of all non-
negative measures defined on (R%, B%) and finite on bounded sets (i.e.,
Radon measures) will be equipped with the smallest o-algebra M con-
taining basic sets of the form {u € M : u(B) < k} for a bounded Borel
set Be B%and 0 < k < co.

A random measure X is a measurable mapping from a fixed probabil-
ity space (Q,%, P) into (M, M). The induced measure Py = Po X~}
on (M, M) is the distribution of X. If X is a random measure and
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B C R%is a Borel subset, then we let X(B) be the random amounts of
mass the measure X gives the set B.

For X € M and a real measurable function f on R¢, we also define
the integral X (f) by

x(5)= [ ax = [ @)X

if the integral on the right exists.
Now, we define

X,(A) = X(rA) for a bounded Borel subset A of R¢

and
Xo(f) = X(fr), where fr(z)= f(z/r).

We denote the collection of Radon measures on R? by M, which is
endowed with the weak topology. Let M[0,L]¢ (denoted by M, later)
be the restriction of measures in M to [0, L}?. In other words, M(R%)
maps onto M ([0, L]) by restriction. Let X be a random measure in M
and let XL (denoted by X, later) be a random measure in M obtained
by restricting X to [0, L]%. We denote X, = (X, )L.

For the random measure X, if E[X,(0, L]*] = r%§ and § = E[X(0, L]¢]
is the intensity of X, the ergodic theorem implies that X, /r? — 4| - |,
where | - | denotes the Lebesgue measure on R%.

In this paper, we consider the large deviation property for rescalings
of random measures on R%. We are interested in estimates of deviations
of X,/r from 6| - |.

The dual objects to random measures are continuous functions with
compact support. Functional approaches to the large deviation property
using test functions as dual objects to random measures are developed.
Also, this property is applied to some important classes of models, i.e.,
Poisson point process and Poisson center cluster random measure.

Let M be the set of finite measures on [0, L]? with the weak topology.
K. is the set of nonnegative and continuous functions defined on
[0, L]%.

DEFINITION 1.1. We say that a function I : M — [0,00] is a rate
function if
(a) I(+) is lower semicontinuous on M, and
(b) I(:) has compact level sets, i.e., for each real number [ < oo the
level sets K; = {pu € M|I(u) <!} are compact in M.
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Now we define the cumulant generating functional of X, as follows:
oz (f) = Tid -logE[e*Xr()] for each f € K.
We shall assume here that

(a) Each function ®x (f) is finite for each f € K. and

(b) &(f) = rl_i_)rgo@xr(f) exists and is also finite for f € K.

The Cramer-Fenchel transform I(u) is defined as the convex conju-
gate of ®(f) by

I(p) = sup {u(f) — @(f)}

feKe

DEFINITION 1.2. The sequence {% ir € R+} is said to satisfy a
large deviation property with a rate function I(-) if the following holds:

(a) I(-) is a rate function. )
(b) (Large deviation upper bound): for all closed subsets F' € M,

1 X
limsupr—d -logP<T—; € F) < —inf I(y).

r—00 HEF

(c) (Large deviation lower bound): for all open subsets G € M,

] X, .
11££fﬁ-logP<ﬁ € G) > —ﬁggI(u).

2. Large deviation upper bound and lower bound

DEFINITION 2.1. Following Deuschel and Stroock [4], we sat that a
family of distribution {P, : r > 0} satisfies large deviation tightness if,
for each a < oo, there exists a compact set K, such that

1
limsup —; - log P.(K,°) < —a.
r—oo T

Let us recall the notation X, and then let P, be the distribution of
. A weak compactness argument shows the following.

T

ﬂ&l B3

LEMMA 2.2. If —{%[0, L]¢ satisfies large deviation tightness as random
variables, then P, also satisfies large deviation tightness.
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In order to show that the large deviation upper bound holds, i.e. for
all closed subsets F' in M,

hmsupl logP(—X— € F> < — inf I( ),

7—00 nekl
it is consequence of Theorem 4.5.3 of Dembo and Zeitouni [3] by applying
the fact that the large deviation upper bound holds for any compact
subset K in M and large deviation tightness.
Now we obtain the large deviation lower bound estimate as follows.
For each open subset G in M,

hmlnf—— logP()—(— € G) > — inf I(p).
r—oo pd neG

We need two assumptions.
Assumption A : If {f,} is a sequence of uniformly bounded measurable
functions on R%, which converges p-almost everywhere to a bounded
measurable function f, then ®(f,) — ®(f), i.e.,® is continuous with
respect to f.
Assumption B : The large deviation lower bound holds for in the sense
of the finite dimensional distribution.

Let us consider a random vector z = (u(A4;),--- , u(A4y)) for disjoint
and bounded Borel subsets Ay, ..., A, of R%. The moment generating
function of the random vector z is defined by

My (t) = E[e<t®>] = E[exp(zn:tm(Ai))} for all £ = (t1,- - ).
=1

We define ®(t) = lim %-log M, (t). In general, we define a rate function
n—00
I(z) for a random vector by I(z) = sup{< ¢,z > —@(1)}.
teR™

LEMMA 2.3. Under the Assumption A, the following property holds:
sup {u(f) — ®(f)} = sup sup {th# (4;) — (¢ )}
fek. n,A1,,An tER™

where f is approximated as a simple function by disjoint subsets Ay,
Ty An-

Proor. Given f € K,. We can find uniformly bounded simple

functions f, = Ztil 4, such that f,, — f. It is clear that p(fn) — p(f)
i=1
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and ®(f,) — ®(f) by Assumption A. Then we derive that
wf) =2 sup  sup {u(fn) = B(fn)}-

nvAlr"aAn ée

Taking sup over all f € K., then we get the following inequality

sup {u(f) - ®(f)} < sup sup {thu }

fEKC n Aly ,An tER

n
On the other hand, given g = Ztil 4, on [0, L]¢, we can find uni-
i=1
formly bounded contimuious functions g,, on [0, L]¢ such that g, — g
a.e.. By Bounded Convergence Theorem and Assumption A, we get

1(gm) — w(g) and ®(gm) — P(g). It is clear that p(gm) — 2(gm) <
sup {u(f)—®(f)}. Taking sup over all g, that is, over all n, Ay, -, A,
feK.

and t1,%2, - ,tn, then we have the reverse inequality as follows

sup {u(f) ~ ®(f)} > sup sup{ztzu(A -2},

fEK, n,A1,...,An tER™

So, the above equality is proved.

THEOREM 2.4. We assume the properties A and B. Then the large
deviation lower bound holds, i.e., for any open subset G in M,

rooo rd pEG

hmmf—— logP(£€G> > — inf I(p).

PROOF. Our proof follows the lines of Dawson and Gértner [2] using
Lemma 2.3. Let G be an open subset in M. Then G is a union of open
sets from ©, since O forms a base for the topology generated by weak
convergence, where

© = {B,open in M : B = B(v,Fi, -+, Fp,¢)}, with
B={ueM: uF)<v(F)+ei=1,---,n and
|u[0, L)* — [0, L]%| < €}

for Borel sets F; C F, C --- C F, C [0, L]
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Now let us take as follows:

(2.1) Eo =[0,L)%/Fy,
(2.2) B = Iy,
(2.3) Ek=Fk/Fk_1, k=2,--- , .

Then there exists an open set U C [0, L]**! depending on v(Fy), ---,
v(Fy,), v[0,L]% and e.

B={upeM: (u(Eo), - ,u(En)) € U}
= C(Ey, -, E,,U) (we denote this by C),

where all E;'s are disjoint. So we have the relation such that

(2.4) ¢= |J B= |J ¢

Be®,BCG Ce0,0CcqG

where C is obtained from B by letting each F; disjoint as (2.1), (2.2)
and (2.3). Thus,

X, X |
P(FEB) =P<;1T_(Fi)<V(Fi)+6 for i=1,---,n

and v([0,L]%) —e < Z(—T—([-g’i—ll]d—)

< v([0,L)%) + e)

= P (0),

where PF4 denotes a probability of a finite dimension and C' depends
on Fy,--- ,F, and [0, L]d which are obtained by making each F; disjoint
as (2.1), (2.2) and (2.3). Since I{G) = inf,eq I(v) by definition, using
the relation (2.4) we have

—I{(G) = — inf I{v) = sup ~1(v)
veG veG

= sup -I(B)= sup -I(C).
BE€©,BCG Ce0,0CG

Moreover if v € G, there exists C € © (obtained from B) depending
upon a finite dimension which contains v such that for each ¢ > 0,
—I(G) < —I(B) + €. Therefore,
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liminf — logP(X G) > liminf — 1ogP(£ € B)
r—oo rd r—oo 1d
= lminf —d -log P4(C)
r—00 T
> —inf I(t) by Assumption B
teC
>

—inf I(u) by L 2.3
inf (1) by Lemma

_I(B) > -I(G) —e.

Since € is arbitrary, letting ¢ — 0, we obtain that

1 X,
hrrg})%fr—d logP( EG)>—:1££I( ).

3. Application of large deviation property

In this section we consider Poisson center cluster random measures.
These are general classes of cluster models which include the Poisson,
Neyman-Scott cluster processes and self-exciting processes. For more
details the reader may consult Kallenberg [10] and Karr [11].

DEerFINITION 3.1. Let X be a random measure and let A be a bounded
Borel set in R®. If a random measure X has independent increments
and X (A) is a Poisson random variable with parameter a|A| where |A|
denotes the Lebesgue measure, then we say that X is a Poisson point
process with intensity o > 0.

ExaMPLE 3.2. (Poisson point process) Let X be a Poisson point
process with intensity a = 1 by rescaling without loss of generality. We
define an appropriate compact subset K, to make P,(K,¢) small enough
by Chebyshev’s inequality for any real number a < co such that

X’ J eLdrd(e—l) rdioa Ld(e_1
P(K,°) = P(T—;[O,L] > Za) < ek e—T{2a—L%e-1)}
K, is compact in the weak topology by the Banach-Alaoglu theorem.
Now, we have that

1
lim sup a log P.(K,°) < —

r—0o0
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for such real number a. This means that P, satisfies large deviation tight-
ness. Thus it is consequence of Theorem 4.5.3 of Dembo and Zeitouni
[3] that P, satisfies the large deviation upper bound.

In order to show that the large deviation lower bound holds, recall
that the moment generating functional of a Poisson random measure X
is

E[eX¥)] = exp(a/ [ef® — 1]dx) for each f e K..
(0,L]4
Then we get that ®(f) = af[o L]d[ef(x) — 1]dz for each f € K.

Now let us check the condition of the Assumption A. For the functions
fn, fin K. with f, — f a.e.,
lim ®(f,) = lim a / (e —1)dz
[0,

n—oo n—o0

= « / lim [¢/*(®) —1]dz by L.D.C.T.
[

O,L]d n—oo

_ 1@ _ 11de = B(F).
a/[O,L]d[e 1)d o(f)

Since ®(f,) — ®(f) as f, — f a.e., the Assumption A is satisfied for
a Poisson random measure X. Now, for the Assumption B, we have
already proved such property in details in [9]. Thus Theorem 2.4. shows
that a large deviation lower bound holds.

From now on, we follow Burton and Dehling (1990) for terminology.

DEFINITION 3.3. Let U be a stationary Poisson process on R? with
intensity o > 0. V is a random measure so that E[V(R?)] = ¢ < co. Let
z; be the random occurrences of U and let V; be independent identically
distributed(i.i.d.) copies of V' that are independent of U. The resulting
cluster process X is said to be a Poisson center cluster random measure,
which is defined by superimposing i.i.d. copies of V centered at the
occurrences of U.

In other words, if A is a bounded Borel subset of R%, then X is defined
by
X(A) =) Vi(A—ug).
i

The moment generating function of V(R?) is My (gay(t) = E [etV(Rd)]
for each t € R. In addition, we assume that V' (R?) has a finite moment
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generating function My (gay(t) for each t € R.

Note that F[X(A)] = a|A|.

EXAMPLE 3.4. (Poisson center cluster random measure) Let X be a
Poisson center cluster random measure. For a bounded Borel subset A of
R¢, we have the moment generating function of X,.(4) from Campbell’s
formula,

My, (4)(t) = exp{a / E[etv(rA_x) — 1]dx}, t € R.
Rd

From Mx, 4)(t), we also get the following inequality, so

My (0) < exp{ rlal My ) - 1}
Now, let us take an appropriate subset K, for any real number a < oo,
X X o
K, = {—7—;(1— e M: r—d[O,L] < Za}.

Then K, is compact in the weak topology by the Banach-Alaoglu the-
orem. Thus we make P.(K,°) small enough by Chebyshev’s inequality
such that

X,
P.(K,5) = P(T—d[O,L]d>2a>
e'rdaLd[Mv(Rd)(l)—l]

< =
- e?ard €

—rd{Qa—aLd[]\Iv(Rd) (1)—-1]}.

Now, we have that lim sup;lg - log P.(K,°) < —a for such real number

a. This means that TProosatisﬁes large deviation tightness. Thus it is
consequence of Theorem 4.5.3 of Dembo and Zeitouni [3] that P, satisfies
the large deviation upper bound.

In order to show that the large deviation lower bound holds, recall
the moment generating functional of a Poisson center cluster random
measure X is

EI:eX(f)] = exp <Oé/ [MV(Rd)(TXf) — 1]dX> for each f € Kc-
(o,L]¢

Then we get that ®(f) = a‘[‘[O’L]d[]\/fv(Rd)(‘f) — 1]dz for each f € K..
Here T3 is the translation operator, (T3 f)(y) = f(z+y) and My (gay(f) =
E[eVE)I@),
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Now let us check the condition of the Assumption A. For the functions
fn, f in K, with f, — f a.e.,

lim &(f,) = lim a/ My (gay(fn) — 1]dz
n—00 n—00 [0,L)¢

3

= « / lim E[e" R _1]dz by LD.C.T.
[o,L

]d n~—C0

= « E[eV(Rdmz) — 1ldz = @(f).
(0,L]¢
Since ®(f,) — ®(f) as f, — f a.e., the Assumption A is satisfied for a
Poisson center cluster random measure X. Now, for the Assumption B,
we have already proved such property in details in [9]. Thus Theorem
2.4. shows that a large deviation lower bound holds.
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