• Title/Summary/Keyword: Estimates

Search Result 6,478, Processing Time 0.03 seconds

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

GRADIENT ESTIMATES OF A NONLINEAR ELLIPTIC EQUATION FOR THE V -LAPLACIAN

  • Zeng, Fanqi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.853-865
    • /
    • 2019
  • In this paper, we consider gradient estimates for positive solutions to the following nonlinear elliptic equation on a complete Riemannian manifold: $${\Delta}_Vu+cu^{\alpha}=0$$, where c, ${\alpha}$ are two real constants and $c{\neq}0$. By applying Bochner formula and the maximum principle, we obtain local gradient estimates for positive solutions of the above equation on complete Riemannian manifolds with Bakry-${\acute{E}}mery$ Ricci curvature bounded from below, which generalize some results of [8].

Phase Noise Effects on the Pulse Pair Spectrum Moment Estimates in a Doppler Weather Radar

  • Lee, jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.7B
    • /
    • pp.951-956
    • /
    • 2001
  • A weather radar usually extracts the necessary information from the return Doppler spectrum moment estimates. Phase stability is a very important factor in obtaining accurate and reliable information in a Doppler weather radar system since the system phase noise may seriously degrade the weather spectrum moment estimation quality. These spectrum moment estimates are commonly obtained using the pulse pair method which is simple to implement and fast enough to process an enormous amount of weather radar data in real time. Therefore, an analytical method is developed in this paper to analyze and quantify the phase noise effects on the pulse pair spectrum moment estimates in terms of the phase noise power and broadness.

  • PDF

Estimation of Fundamental Frequency Using an Instantaneous Frequency Based on the Symmetric Higher Order Differential Energy Operator (대칭구조를 갖는 일반적인 고차의 미분 에너지함수를 기반한 순간주파수를 이용한 음성의 기본주파수 추정)

  • Iem, Byeong-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2374-2379
    • /
    • 2011
  • The fundamental frequency of the voiced speech is estimated using the instantaneous frequency based on the symmetric higher order differential energy operator. The instantaneous frequency based on the symmetric higher order energy operator shows better frequency estimation result since it is aligned to the time instance of the signal. The speech is pre-processed by a lowpass filter to remove higher frequency components. Then, it is processed by the instantaneous frequency to obtain the fundamental frequency estimates. The symmetric higher order energy operator has been used as an indicator to determine the voiced/unvoiced speech. The fundamental frequency estimates are further processed by a moving average filter to obtain the monotonically changed estimates. The obtained fundamental frequency estimates have been compared with the spectrogram of the speech to confirm its accuracy.

A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE PROPERTY OF VARIATIONAL DISCRETIZATION FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Tang, Yuelong;Hua, Yuchun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.479-490
    • /
    • 2013
  • In this paper, we investigate a priori error estimates and superconvergence of varitional discretization for nonlinear parabolic optimal control problems with control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is not directly discretized. We derive a priori error estimates for the control and superconvergence between the numerical solution and elliptic projection for the state and the adjoint state and present a numerical example for illustrating our theoretical results.

Selection of Optimal Values in Spatial Estimation of Environmental Variables using Geostatistical Simulation and Loss Functions

  • Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.31 no.5
    • /
    • pp.437-447
    • /
    • 2010
  • Spatial estimation of environmental variables has been regarded as an important preliminary procedure for decision-making. A minimum variance criterion, which has often been adopted in traditional kriging algorithms, does not always guarantee the optimal estimates for subsequent decision-making processes. In this paper, a geostatistical framework is illustrated that consists of uncertainty modeling via stochastic simulation and risk modeling based on loss functions for the selection of optimal estimates. Loss functions that quantify the impact of choosing any estimate different from the unknown true value are linked to geostatistical simulation. A hybrid loss function is especially presented to account for the different impact of over- and underestimation of different land-use types. The loss function-specific estimates that minimize the expected loss are chosen as optimal estimates. The applicability of the geostatistical framework is demonstrated and discussed through a case study of copper mapping.

A Nonparametric Test on Mean Difference of DEA Efficiency Estimates - Bootstrapping Approach- (DEA의 효율성 평균 차이에 대한 비모수적 검증-부트스트랩 접근법-)

  • 민재형;김진한
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.53-68
    • /
    • 1999
  • This paper presents a nonparametric method to test if the mean difference of DEA efficiency estimates between two groups statistically exists. A proposed method employs a bootstrapping approach to generation BCC efficiency estimates through Monte Carlo simulation resampling process. For the purpose of demonstration, we empirically apply the proposed method to the korean bank industry and compare its result with the result by the traditional deterministic DEA method. The nonparametric statistical hypothesis testing procedure in this study, which considers not only stochastic variability of the DEA data, but also random radial deviations off the efficient frontier, serves as a useful tool for dbjectively evaluating whether the mean difference of DEA efficiency estimates between groups is statistically significant.

  • PDF

ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1127-1144
    • /
    • 2013
  • In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order $k$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order $k(k{\geq}1)$. $L^2$ and $L^{\infty}$-error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for fourth order elliptic control problems.