• 제목/요약/키워드: Essential applications

검색결과 1,275건 처리시간 0.029초

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

  • Kannan, M. Bobby
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.54-57
    • /
    • 2016
  • Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.

BUILDING EXTRACTION FROM LIDAR DATA USING DEVIRED NORMALIZE DIGITAL SURFACE MODEL

  • Nguyen, Dinh-Tai;Lee, Seung-Ho;Cho, Hyun-Kook;Kim, Cheon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2009년도 춘계학술대회 논문집
    • /
    • pp.286-290
    • /
    • 2009
  • In recent years, LiDAR technology has been becoming more popular and important. Its applications are completely replacing the traditional remote sensing technique. One of these applications is creating Digital City Models in urban areas, which is essential for many others such as disaster management, cartographic mapping, simulation of new buildings, updating and keeping cadastral data. In most of these cases the building outlines is the primary feature of interest. In this paper, a method of extracting building outlines from LiDAR data will be performed.

  • PDF

NOISE Spectroscopy: Applications to Solid State NMR

  • Yang, Doo-Kyung;Zax, D.B.
    • 한국자기공명학회논문지
    • /
    • 제6권2호
    • /
    • pp.142-154
    • /
    • 2002
  • One of the oldest, still unsolved, and often ignored problems in magnetic resonance remains the issue of how to observe undistorted, normal one-dimensional spectra where the frequencies and their relative intensities represent faithfully the distribution of spins and sites in the sample within the magnet. Often distortions in these parameters are accepted, as the price of sensitivity enhancement, or because it is unclear just how these distortions might be avoided. Surprisingly enough, the problem is exacerbated by the use of modern techniques of pulsed Fourier transform NMR. Noise spectroscopy is an approach to solving the problem of distorted NMR spectra, which is largely under appreciated; it promises virtually "unlimited" distortionless bandwidths without costly hardware investments. Nonetheless, its exploitation remains limited. We will discuss why noise spectroscopy belongs in the arsenal of tricks spectroscopists should be aware of, show examples where its use is essential if accurate, quantitative NMR is to be expected, and discuss some recent approaches which extend its applicability yet further, particularly in solid state NMR and in applications to quadrupolar nuclear spins.

  • PDF

Discontinuous PWM Scheme for Switching Losses Reduction in Modular Multilevel Converters

  • Jeong, Min-Gyo;Kim, Seok-Min;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1490-1499
    • /
    • 2017
  • The modular multilevel converter (MMC) is generally considered to be a promising topology for medium-voltage and high-voltage applications. However, in order to apply it to high-power applications, a huge number of switching devices is essential. The numerous switching devices lead to considerable switching losses, high cost and a larger heat sink for each of the switching device. In order to reduce the switching losses of a MMC, this paper analyzes the performance of the conventional discontinuous pulse-width modulation (DPWM) method and its efficiency. In addition, it proposes a modified novel DPWM method for advanced switching losses reduction. The novel DPWM scheme includes an additional rotation method for voltage-balancing and power distribution among sub modules (SMs). Simulation and experimental results verify the effectiveness and performance of the proposed modulation method in terms of its switching losses reduction capability.

육방정계 텅스텐옥사이드 나노분말의 합성과 고성능 가스센서응용을 위한 성능 평가 (Fabrication and Characterization of Hexagonal Tungsten Oxide Nanopowders for High Performance Gas Sensing Application)

  • 박진수
    • 한국분말재료학회지
    • /
    • 제26권1호
    • /
    • pp.28-33
    • /
    • 2019
  • The gas sensor is essential to monitoring dangerous gases in our environment. Metal oxide (MO) gas sensors are primarily utilized for flammable, toxic and organic gases and $O_3$ because of their high sensitivity, high response and high stability. Tungsten oxides ($WO_3$) have versatile applications, particularly for gas sensor applications because of the wide bandgap and stability of $WO_3$. Nanosize $WO_3$ are synthesized using the hydrothermal method. As-prepared $WO_3$ nanopowders are in the form of nanorods and nanorulers. The crystal structure is hexagonal tungsten bronze ($MxWO_3$, x =< 0.33), characterized as a tunnel structure that accommodates alkali ions and the phase stabilizer. A gas detection test reveals that $WO_3$ can detect acetone, butanol, ethanol, and gasoline. This is the first study to report this capability of $WO_3$.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

양자컴퓨팅 소프트웨어 최신 기술 동향 (State-of-the-art in Quantum Computing Software)

  • 조은영;김영철;정희범;차규일
    • 전자통신동향분석
    • /
    • 제36권6호
    • /
    • pp.67-77
    • /
    • 2021
  • Since Richard Feynman presented the concept of quantum computers, quantum computing have been identified today overcoming the limits of supercomputing in various applications. Quantum hardware has steadily developed into 50 to hundreds of qubits of various quantum hardware technologies based on superconductors, semiconductors, and trapped ions over 40 years. However, it is possible to use a NISQ (Noisy Intermediate Scale Quantum) level quantum device that currently has hardware constraints. In addition, the software environment in which quantum algorithms for problem solving in various applications can be executed is pursuing research with quantum computing software such as programming language, compiler, control, testing and verification. The development of quantum software is essential amid intensifying technological competition for the commercialization of quantum computers. Therefore, this paper introduces the trends of the latest technology, focusing on quantum computing software platforms, and examines important software component technologies.

APPLICATIONS OF SIMILARITY MEASURES FOR PYTHAGOREAN FUZZY SETS BASED ON SINE FUNCTION IN DECISION-MAKING PROBLEMS

  • ARORA, H.D.;NAITHANI, ANJALI
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.897-914
    • /
    • 2022
  • Pythagorean fuzzy sets (PFSs) are capable of modelling information with more uncertainties in decision-making problems. The essential feature of PFSs is that they are described by three parameters: membership function, non-membership function and hesitant margin, with the total of the squares of each parameter equal to one. The purpose of this article is to suggest some new similarity measures and weighted similarity measures for PFSs. Numerical computations have been carried out to validate our proposed measures. Applications of these measures have been applied to some real-life decision-making problems of pattern detection and medicinal investigations. Moreover, a descriptive illustration is employed to compare the results of the proposed measures with the existing analogous similarity measures to show their effectiveness.

Mitochondrial genome editing: strategies, challenges, and applications

  • Kayeong Lim
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.19-29
    • /
    • 2024
  • Mitochondrial DNA (mtDNA), a multicopy genome found in mitochondria, is crucial for oxidative phosphorylation. Mutations in mtDNA can lead to severe mitochondrial dysfunction in tissues and organs with high energy demand. MtDNA mutations are closely associated with mitochondrial and age-related disease. To better understand the functional role of mtDNA and work toward developing therapeutics, it is essential to advance technology that is capable of manipulating the mitochondrial genome. This review discusses ongoing efforts in mitochondrial genome editing with mtDNA nucleases and base editors, including the tools, delivery strategies, and applications. Future advances in mitochondrial genome editing to address challenges regarding their efficiency and specificity can achieve the promise of therapeutic genome editing.

파장가변 광원 개발 동향 및 응용 (Trends in Wavelength-Tunable Laser Development and Applications)

  • 권오기;김기수;권용환
    • 전자통신동향분석
    • /
    • 제39권1호
    • /
    • pp.48-61
    • /
    • 2024
  • The integration of high-capacity terrestrial networks with non-terrestrial communication using satellites has become essential to support seamless low-latency services based on artificial intelligence and big data. Tunable light sources have been instrumental in resolving the complexity of channel management in wavelength division multiplexing (WDM) systems, contributing to increased network flexibility and serving as optical sources for long-distance coherent systems. Recently, these light sources have been applied to beam-steering devices in laser communication and sensing applications across ground, aerial, and satellite transport. We examine the utilization and requirements of tunable lasers in WDM networks and describe the relevant development status. In addition, performance requirements and development directions for tunable lasers used in optical interference systems and beam-steering devices are reviewed.