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APPLICATIONS OF SIMILARITY MEASURES FOR
PYTHAGOREAN FUZZY SETS BASED ON SINE FUNCTION

IN DECISION-MAKING PROBLEMS

H.D. ARORA AND ANJALI NAITHANI∗

Abstract. Pythagorean fuzzy sets (PFSs) are capable of modelling infor-
mation with more uncertainties in decision-making problems. The essential
feature of PFSs is that they are described by three parameters: membership
function, non-membership function and hesitant margin, with the total of
the squares of each parameter equal to one. The purpose of this article is
to suggest some new similarity measures and weighted similarity measures
for PFSs. Numerical computations have been carried out to validate our
proposed measures. Applications of these measures have been applied to
some real-life decision-making problems of pattern detection and medicinal
investigations. Moreover, a descriptive illustration is employed to compare
the results of the proposed measures with the existing analogous similarity
measures to show their effectiveness.
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1. Introduction

Decision making is considered as a process of perception that is used to solve
problems we face in daily life. Because of the complexities of current socio-
economic environment, decision making is one of the most important idea aimed
at achieving the best possible solution, or at least achieving satisfaction by de-
tecting and selecting alternatives. Decision making is complicated when there
is uncertainty associated with it. Despite dealing with ambiguity, Zadeh’s [49]
fuzzy set is a good instrument, but over time it was found to be inadequate. To
overcome the problem that has arisen, the intuitionistic fuzzy sets (IFSs) sug-
gested by Atanassov [1, 2] has demonstrated its effectiveness. To deal with the
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information provided without loss and ultimately to get a better option various
operator are utilized. Atanassov [1, 2] studied a non-membership degree ζ of an
element along with membership degree δ, with hesitation margin η such that
they satisfy the linear inequality δ+ζ ≤ 1 and δ+ζ+η = 1. Unlike the scenario
captured in IFSs, there exists possibility when δ + ζ ≥ 1. This inadequacy in
IFSs surely preceded to a configuration, called PFSs. PFSs proposed by Yager
[41, 42] is a novel tool to deal with vagueness considering membership degree δ
and non-membership ζ satisfying the requirements δ + ζ ≤ 1 or δ + ζ ≥ 1, and
hence it sees that δ2 + ζ2 + η2 = 1, where η is the PFS index.

Various researchers have presumably exploited Yager’s [43] Pythagorean fuzzy
sets concept and applied it to dynamic, clinical discovery, design acknowledg-
ment, and a variety of other plausible issues. Zhang and Xu [54] presented a
similarity methodology based on a scoring capacity to organise the Pythagorean
fuzzy positive ideal arrangement (PIS) and the Pythagorean fuzzy negative ideal
arrangement (PFNA) to cope with the dynamic issue with PFSs (NIS). They
used the order preference by similarity to ideal solution methodology to deter-
mine the distances between each option using PIS and NIS, separately. Peng
and Yang [24] suggested essential tasks for PFSs and furnished fuzzy aggregation
operators alongside their significant possessions. Additionally, they fostered a
Pythagorean prevalence and mediocrity positioning calculation over tackle col-
lective choice making issues considering vulnerability. Strategy for dynamic
issues with the assistance of accumulation administrators and distance mea-
sures has been created by Zeng et al. [52]. They proposed PFSs weighted av-
eraging distance operator and fostered TOPSIS strategy. Further, Yager [43]
presented a portion of the fundamental set tasks for PFSs and set up the con-
nection between Pythagorean membership grade and complex grade. Likewise,
the arrangements of multicriteria dynamic with fulfillment through Pythagorean
membership grade have been done.

The similarity measure is a significant exploration matter in the FSs and can
be utilized to decide the comparability degree between two items. Measures
of similarity between fuzzy sets attracted the attention of researchers to them
extensive applications in areas such as machine learning, pattern recognition,
decision making and in image processing are proposed and studied in the cur-
rent years (Bustince et al. [3, 4]; Lee et al. [14]). Szmidt and Kacprzyk [32, 33]
nurtured a similitude measure between IFSs dependent on the Hamming dis-
tance and Hung and Yang [11] decided the distance between IFSs dependent
on the Hausdorff distance and produced some likeness gauges between IFSs. Li
and Zeng [17] recommended some distance measures for PFSs, which ponder
four boundaries and seen that the four boundaries are not the traditional high-
lights of PFSs. However, Taruna et al. [34] offered trigonometric divergence
measure between fuzzy sets A and B. Li and Cheng [15] suggested a proper
comparability measure among IFSs and employed it to design acknowledgment
issues. Peng [26], Li et al. [16] and explored some new comparability measure
and another uniqueness measure for PFSs by fusing four boundaries 3 or more
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customary parts of PFSs. The thoughts of closeness and difference of PFSs
as augmentation of the task were presented by Zeng et al. [51] by combining
boundaries and employed to multi-standards dynamic issues. Shi and Ye [29]
and Ye [44, 45] proposed cosine similarity measures for ambiguous sets and IFS.
Additionally, Tian [35] and Rajarajeswari and Uma [27] characterized cotan-
gent similarity proportion of IFSs. The similarity proportion of the IFSs and
PFSs are extensively exploited in various fields, similar to the pattern recogni-
tion (Hwang et al. [12]; Peng and Garg [23]; Song et al. [31]; Gong [9]; Zhang et
al. [55]; Li and Cheng [15]; Peng et al. [25]), the clinical finding (Muthukumar
and Krishnan [21]; Son and Phong [30]; Wei et al. [36]; Hung and Wang [10];
Maoying [19]), decision-making (Ye [46, 47]; Chen et al. [5]; Liang and Xu [18];
Xu [38, 39]; Zhang [52]; Zhang et al. [53]). Some formulae of Pythagorean fuzzy
information measures (distance measure, similarity measure, entropy, inclusion
measure) and corresponding transformation relationships were developed (Peng
et al. [25]). Some similarity measures between PFSs dependent on the cosine
work were intended (Wei and Wei [37]) by applied to design identification and
clinical analysis. A similarity metric for PFSs based on a combination of co-
sine likeness and Euclidean distance was proposed, emphasising association and
non-association degrees (Mohd and Abdullah [20]). Ejegwa [7] combined the
3 traditional boundaries of PFSs with more sensible, dependable, and effective
yield, are irrefutable. Cotangent comparability for rough IFSs was proposed (Im-
maculate et al. [13]) and a clinical conclusion was additionally given to confirm
the proposed similarity measure. Ejegwa [8] proposed novel similarity measures
for PFSs which were used to dynamic issues.

The following is a breakup of the paper’s structure: The definitions of the FS,
IFS, and PFS are introduced in Section 2. The PFSs are compared using two
similarity measures and two weighted similarity measures in Section 3. Our mea-
surements have been validated using numerical computations. Section 4 deals
with pattern recognition, medical diagnosis, and MADM using similarity mea-
sures and weighted similarity measures. With the help of an example, Section 5
compares the new similarity measures with the existing measures. The article is
summarized in Section 6.

2. Preliminaries

We introduce some basic notions about FSs, IFSs, and PFSs in this part,
which are employed in the outcome.

Definition 2.1 (Zadeh [49]). Let X be a nonempty set. A fuzzy set Ã in
X = {x1, x2, . . . , xn} is characterized by a membership function:

Ã = {⟨x, δÃ(x)⟩ | x ∈ X} (1)

where δÃ(x) : X → [0, 1] is a measure of belongingness of degree of membership
of an element x ∈ X in Ã.
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Definition 2.2 (Atanassov [1]). An IFS Ã in X is given by

Ã = {⟨x, δÃ(x), ζÃ(x)⟩ | x ∈ X} (2)

where δÃ(x) : X → [0, 1] and ζÃ(x) : X → [0, 1], where 0 ≤ δÃ(x) + ζÃ(x) ≤ 1,
∀ x ∈ X. The number δÃ(x) and ζÃ(x) represents, respectively, the MD and
NMD of the element x to the set Ã.
For each IFS Ã in X, if

ηÃ(x) = 1− δÃ(x)− ζÃ(x), ∀ x ∈ X. (3)

Then ηÃ(x) is called the degree of indeterminacy of x to Ã. For convenience,
Xu [37] denoted this pair as Ã = (δÃ, ζÃ).

Further, Dutta and Goala [6] proposed the novel distance measure between
IFSs P and Q as following:

Dis1(P,Q) =
2

n

n∑
i=1

sin
{
π
6 |δP (xi)− δQ(xi)|

}
+ sin

{
π
6 |ζP (xi)− ζQ(xi)|

}
1 + sin

{
π
6 |δP (xi)− δQ(xi)|

}
+ sin

{
π
6 |ζP (xi)− ζQ(xi)|

} .
(4)

Sharma and Tripathi [28] proposed measures of sine intuitionistic fuzzy distance
for P and Q as following:

Dis2(P,Q)

=
1

2n

n∑
i=1

[(
sin

(
|δP (xi)− δQ(xi)|

2

)
π

)
+

(
sin

(
|ζP (xi)− ζQ(xi)|

2

)
π

)]
(5)

Dis3(P,Q)

=
1

2n

n∑
i=1

[(
sin

(
|
√
δP (xi)| −

√
δQ(xi)

2

)
π

)
+

(
sin

(
|
√
ζP (xi)−

√
ζQ(xi)|

2

)
π

)]
(6)

Definition 2.3 (Yager [40]). An IFS Ã in X is given by

Ã = {⟨x, δÃ(x), ζÃ(x)⟩ | x ∈ X}

where δÃ(x) : X → [0, 1] and ζÃ(x) : X → [0, 1], with the condition that

0 ≤ δ2
Ã
(x) + ζ2

Ã
(x) ≤ 1, ∀ x ∈ X (7)

and the degree of indeterminacy for any PFS Ã and x ∈ X is given by

ηÃ(x) =
√

1− δ2
Ã
(x)− ζ2

Ã
(x) (8)

This distinction in imperative conditions gives a more extensive inclusion for
evidence which can be shown through graph as
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Figure 1. Comparison between IFS and PFS

3. Similarity Measures

In this stage, the current PFSs similarity measures are presented first, followed
by the proposal of new PFSs.

3.1. Existing Similarity Measures.
Definition 3.1 (Ejegwa [7]). Let P,Q ∈PFS(X) such that X = {x1, x2, . . . , xn}
then new similarity measures for PFSs can be calculated as
Sim1(P,Q)

= 1− 1

2n

n∑
i=1

[|δP (xi)− δQ(xi)|+ |ζP (xi)− ζQ(xi)|+ |ηP (xi)− ηQ(xi)|] (9)

Sim2(P,Q)

= 1−

(
1

2n

n∑
i=1

[(δP (xi)− δQ(xi))
2 + (ζP (xi)− ζQ(xi))

2 + (ηP (xi)− ηQ(xi))
2]

) 1
2

(10)
Sim3(P,Q)

= 1− 1

2n

n∑
i=1

[|δ2P (xi)− δ2Q(xi)|+ |ζ2P (xi)− ζ2Q(xi)|+ |η2P (xi)− η2Q(xi)|] (11)

Definition 3.2 (Nguyen et al. [22]). For two PFSs P = {⟨xi, δP .ζP ⟩ | xi ∈ X}
and Q = {⟨xi, δQ.ζQ⟩ | xi ∈ X}, the two exponential similarity measures are
defined as

Sim4(P,Q) = e−|δ2P (xi)−δ2Q(xi)| (12)
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and

Sim5(P,Q) = e−|ζ2P (xi)−ζ2Q(xi)| (13)

Definition 3.3 (Zhang et al. [53]). Let P = {⟨xi, δP .ζP ⟩ | xi ∈ X} and Q =

{⟨xi, δQ.ζQ⟩ | xi ∈ X} be two PFSs on X, and ηP (xi) =
√

1− δ2P (xi)− ζ2P (xi)

and ηQ(xi) =
√
1− δ2Q(xi)− ζ2Q(xi), then the similarity measures can be deter-

mined as

Sim6(P,Q) =
1

n

n∑
i=1

[21−(|δ2P (xi)−δ2Q(xi)|
∨

|ζ2P (xi)−ζ2Q(xi)|) − 1] (14)

Sim7(P,Q) =
1

n

n∑
i=1

[21−
1
2 (|δ

2
P (xi)−δ2Q(xi)|+|ζ2P (xi)−ζ2Q(xi)|) − 1] (15)

Sim8(P,Q) =
1

n

n∑
i=1

[21−(|δ2P (xi)−δ2Q(xi)|
∨

|ζ2P (xi)−ζ2Q(xi)|
∨

|η2P (xi)−η2Q(xi)|) − 1]

(16)

Sim9(P,Q) =
1

n

n∑
i=1

[21−
1
2 (|δ

2
P (xi)−δ2Q(xi)|+|ζ2P (xi)−ζ2Q(xi)|+|η2P (xi)−η2Q(xi)|) − 1]

(17)

where the symbol “∨” represents the maximum operation.

Definition 3.4 (Ejegwa [8]). Let P,Q ∈PFS(X) such that X = {x1, x2, . . . , xn}
then new similarity measures for PFSs can be calculated as

Sim10(P,Q)

= 1− 1

4n

n∑
i=1

[|δP (xi)− δQ(xi)|+ ||δP (xi)− ζP (xi)| − |δQ(xi)− ζQ(xi)||

+ ||δP (xi)− ηP (xi)| − |δQ(xi)− ηQ(xi)||] (18)
Sim11(P,Q)

= 1− 1

4n

n∑
i=1

[|δP (xi)− δQ(xi)|+ |ζP (xi)− ζQ(xi)|+ |ηP (xi)− ηQ(xi)|

+ 2max{|δP (xi)− δQ(xi)|, |ζP (xi)− ζQ(xi)|, |ηP (xi)− ηQ(xi)|}] (19)
Sim12(P,Q)

= 1−
(

1

4n

n∑
i=1

[(δP (xi)− δQ(xi))
2 + (ζP (xi)− ζQ(xi))

2 + (ηP (xi)− ηQ(xi))
2



Applications of Similarity Measures for Pythagorean Fuzzy Sets based on Sine Function … 903

+ 2max{(δP (xi)− δQ(xi))
2, (ζP (xi)− ζQ(xi))

2, (ηP (xi)− ηQ(xi))
2}]
) 1

2

(20)

where ηP (xi) =
√
1− δ2P (xi)− ζ2P (xi) and ηQ(xi) =

√
1− δ2Q(xi)− ζ2Q(xi).

3.2. Proposed Similarity Measures. To begin, the axiomatic proposition of
similarity for PFSs is recalled.

Proposition 1 (Ejegwa [7]). Let X be non-empty set and P,Q,R ∈PFS(X).
The similarity measure Sim between P and Q is a function Sim : PFS×PFS →
[0, 1] satisfies

(P1) Boundedness: 0 ≤ Sim(P,Q) ≤ 1.
(P2) Separability: Sim(P,Q) = 1 ⇔ P = Q.
(P3) Symmetric: Sim(P,Q) = Sim(Q,P ).
(P4) Inequality: If R is a PFS in X and P ⊆ Q ⊆ R, then Sim(P,R) ≤

Sim(P,Q) and Sim(P,R) ≤ Sim(Q,R).

Wei and Wei [37] proposed two cosine similarity measures for two PFSs P
and Q, as follows:

Sim13 (P,Q)=
1

n

n∑
i=1

cos
[π
2

(∣∣δ2P (xi)−δ2Q (xi)
∣∣∨ ∣∣ζ2P (xi)−ζ2Q (xi)

∣∣)] (21)

Sim14 (P,Q)=
1

n

n∑
i=1

cos
[π
4

(∣∣δ2P (xi)−δ2Q (xi)
∣∣+ ∣∣ζ2P (xi)−ζ2Q (xi)

∣∣)] (22)

In several circumstances, the weight of the elements xi ∈ X must be considered.
For instance, in decision making, the attributes usually have distinct significance,
and thus ought to be designated unique weights. As a result, two weighted cosine
similarity measure were proposed by Wei and Wei [37] as

Sim15 (P,Q)=
1

n

n∑
i=1

wicos
[π
2

(∣∣δ2P (xi)−δ2Q (xi)
∣∣∨ ∣∣ζ2P (xi)−ζ2Q (xi)

∣∣)] (23)

Sim16 (P,Q)=
1

n

n∑
i=1

wicos
[π
4

(∣∣δ2P (xi)−δ2Q (xi)
∣∣+ ∣∣ζ2P (xi)−ζ2Q (xi)

∣∣)] (24)

Based on the above measures, we propose the following trigonometric similarity
measures between P and Q, as follows:
Let P,Q ∈PFS(X) such that X = {x1, x2, . . . , xn} then

SPFS1(P,Q)

= 1− 1

2n

n∑
i=1

[
sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}]
(25)
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SPFS2(P,Q)

= 1− 1

3n

n∑
i=1

[
sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}
+ sin

{π
2
|η2P (xi)− η2Q(xi)|

}]
(26)

SPFS3(P,Q)

= 1− 1

2n

n∑
i=1

ωi

[
sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}]
(27)

SPFS4(P,Q)

= 1− 1

3n

n∑
i=1

ωi

[
sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}
+ sin

{π
2
|η2P (xi)− η2Q(xi)|

}]
(28)

ηP (xi) =
√
1− δ2P (xi)− ζ2P (xi) and ηQ(xi) =

√
1− δ2Q(xi)− ζ2Q(xi),

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of xi (i = 1, 2, . . . , n), with

ωk ∈ [0, 1], k = 1, 2, . . . , n,
n∑
k=1

ωk = 1. If ω =
(
1
n ,

1
n , . . .

1
n

)T , then the weighted

sine similarity measure reduces to proposed sine similarity measures. If we take
ωk = 1, k = 1, 2, . . . , n, then SPFS3(P,Q) = SPFS1(P,Q). Similarly, it can be
verified that SPFS4(P,Q) = SPFS2(P,Q).

Theorem 1. The Pythagorean fuzzy similarity measures SPFS1(P,Q) and
SPFS2(P,Q) defined in equation (25)-(28) are valid measures of Pythagorean
fuzzy similarity.

Proof. All the necessary four conditions to be a similarity measure are satisfied
by the new similarity measures as follows:
(P1) Boundedness: 0 ≤ SPFS1(P,Q), SPFS2(P,Q) ≤ 1

Proof. For SPFS1(P,Q): Since the value of the sine function is within [0, 1], the
similarity measure based on the sine function is also within [0, 1]. Thus, we have,

0 ≤ sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2

∣∣ζ2P (xi)− ζ2Q(xi)
∣∣} ≤ 2

⇒ 0 ≤ 1

2

[
sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2

∣∣ζ2P (xi)− ζ2Q(xi)
∣∣}] ≤ 1

⇒ 0 ≤ 1

2

[
sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2

∣∣ζ2P (xi)− ζ2Q(xi)
∣∣}] ≤ 1

⇒ 0 ≤ 1

2n

n∑
i=1

[
sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2

∣∣ζ2P (xi)− ζ2Q(xi)
∣∣}] ≤ 1



Applications of Similarity Measures for Pythagorean Fuzzy Sets based on Sine Function … 905

⇒ 0 ≤ 1− 1

2n

n∑
i=1

[
sin
{π
2

∣∣δ2P (xi)− δ2Q(xi)
∣∣}+ sin

{π
2

∣∣ζ2P (xi)− ζ2Q(xi)
∣∣}] ≤ 1

⇒ 0 ≤ SPFS1(P,Q) ≤ 1.

Measure SPFS2(P,Q) can be proved similarly.
(P2) Separability: SPFS1(P,Q), SPFS2(P,Q) = 1 ⇔ P = Q.
Proof. For SPFS1(P,Q): For two PFSs P and Q in X = {x1, x2, . . . , xn}, if
P = Q, then δ2P (xi) = δ2Q(xi) and ζ2P (xi) = ζ2Q(xi). Thus, |δ2P (xi)− δ2Q(xi)| = 0

and |ζ2P (xi)− ζ2Q(xi)| = 0. Since sin 0 = 0, therefore, SPFS2(P,Q) = 1.

If SPFS1(P,Q) = 1, this implies |δ2P (xi)− δ2Q(xi)| = 0 and |ζ2P (xi)− ζ2Q(xi)| = 0.
Since sin 0 = 0, therefore δ2P (xi) = δ2Q(xi) and ζ2P (xi) = ζ2Q(xi). Hence P = Q.
Measure SPFS2(P,Q) can be proved similarly.
(P3) Symmetric: SPFSj(P,Q) = SPFSj(Q,P ) for j = 1, 2.
Proofs are self-explanatory and straight forward.
(P4) Inequality: If R is a PFS in X and P ⊆ Q ⊆ R, then SPFSj(P,R) ≤
SPFSj(P,Q) and SPFSj(P,R) ≤ SPFSj(Q,R) where j = 1, 2.
Proof. For SPFS1(P,Q): If P ⊆ Q ⊆ R, then for xi ∈ X, we have 0 ≤ δP (xi) ≤
δQ(xi) ≤ δR(xi) ≤ 1 and 1 ≥ ζP (xi) ≥ ζQ(xi) ≥ ζR(xi) ≥ 0.
This implies that 0 ≤ δ2P (xi) ≤ δ2Q(xi) ≤ δ2R(xi) ≤ 1 and 1 ≥ ζ2P (xi) ≥ ζ2Q(xi) ≥
ζ2R(xi) ≥ 0. This we have,

|δ2P (xi)− δ2Q(xi)| ≤ |δ2P (xi)− δ2R(xi)| ; |δ2Q(xi)− δ2R(xi)| ≤ |δ2P (xi)− δ2R(xi)|

and

|ζ2P (xi)− ζ2Q(xi)| ≤ |ζ2P (xi)− ζ2R(xi)| ; |ζ2Q(xi)− ζ2R(xi)| ≤ |ζ2P (xi)− ζ2R(xi)|

From the above we can write,

⇒ π

2
|δ2P (xi)− δ2Q(xi)| ≤

π

2
|δ2P (xi)− δ2R(xi)|

⇒ sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
≤ sin

{π
2
|δ2P (xi)− δ2R(xi)|

}
(29)

Also,

sin
{π
2
|ζ2P (xi)− ζ2Q(xi)|

}
≤ sin

{π
2
|ζ2P (xi)− ζ2R(xi)|

}
. (30)

Adding (29) and (30), we have

sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}
≤ sin

{π
2
|δ2P (xi)− δ2R(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2R(xi)|

}
⇒ 1

2n

n∑
i=

[
sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}]
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≤ 1

2n

n∑
i=

[
sin
{π
2
|δ2P (xi)− δ2R(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2R(xi)|

}]
⇒ 1− 1

2n

n∑
i=

[
sin
{π
2
|δ2P (xi)− δ2Q(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2Q(xi)|

}]
≥ 1− 1

2n

n∑
i=

[
sin
{π
2
|δ2P (xi)− δ2R(xi)|

}
+ sin

{π
2
|ζ2P (xi)− ζ2R(xi)|

}]
⇒ SPFS1(P,R) ≤ SPFS1(P,Q). (31)

Similarly, SPFS1(P,R) ≤ SPFS1(Q,R).
Similar proofs can be made for SPFS2(P,R) ≤ SPFS2(P,Q) and SPFS2(P,R) ≤

SPFS2(Q,R).
Analogous to the proofs done above, we can also validate properties depicted

in Proposition 1 for weighted similarity measures SPFS3(P,Q) and SPFS4(P,Q)
accordingly.

3.3. Numerical Verification of the Similarity Measures. Based on the
parameters suggested by Wei and Wei [37], we verify whether proposed similarity
measures satisfy above four properties:

Example 1. Let P,Q,R ∈ PFS(X) for X = {x1, x2, x3}. Suppose
P = {⟨x1, 0.6, 0.2⟩, ⟨x2, 0.4, 0.6⟩, ⟨x3, 0.5, 0.3⟩},
Q = {⟨x1, 0.8, 0.1⟩, ⟨x2, 0.7, 0.3⟩, ⟨x3, 0.6, 0.1⟩} and
R = {⟨x1, 0.9, 0.2⟩, ⟨x2, 0.8, 0.2⟩, ⟨x3, 0.7, 0.3⟩}
The following are the steps for calculating similarity using the recommended

similarity measures:

SPFS1(P,Q)

= 1− 1

6

[
sin
{π
2
|0.62 − 0.82|

}
+ sin

{π
2
|0.22 − 0.12|

}
+ sin

{π
2
|0.42 − 0.72|

}
+sin

{π
2
|0.62 − 0.32|

}
+ sin

{π
2
|0.52 − 0.62|

}
+ sin

{π
2
|0.32 − 0.12|

}]
= 1− 1

6
[0.42578 + 0.04710 + 0.495458 + 0.411514 + 0.17193 + 0.12533]

= 1− 1

6
(1.677112) = 0.72048.

SPFS1(P,R)

= 1− 1

6

[
sin
{π
2
|0.62 − 0.92|

}
+ sin

{π
2

∣∣0.22 − 0.22
∣∣}+ sin

{π
2
|0.42 − 0.82|

}]
+ sin

{π
2
|0.62 − 0.22|

}
+ sin

{π
2
|0.52 − 0.72|

}
+ sin

{π
2
|0.32 − 0.32|

}
= 1− 1

6
[0.649448 + 0.0 + 0.684547 + 0.4817536 + 0.368124 + 0.0]
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= 1− 1

6
(2.1838726) = 0.636021.

SPFS1(Q,R)

= 1− 1

6

[
sin
{π
2
|0.82 − 0.92|

}
+ sin

{π
2
|0.12 − 0.22|

}
+ sin

{π
2
|0.72 − 0.82|

}]
+ sin

{π
2
|0.32 − 0.22|

}
+ sin

{π
2
|0.62 − 0.72|

}
+ sin

{π
2
|0.12 − 0.32|

}
= 1− 1

6
[0.26387 + 0.04710 + 0.233445 + 0.078459 + 0.202787 + 0.12533]

= 1− 1

6
(0.950991) = 0.8415015.

Similarly, we can find values for SPFS2(P,Q), SPFS2(P,R), and SPFS2(Q,R)
as 0.755442, 0.616652 and 0.806625, respectively.

Similarly, we can find values for SPFS3(P,Q), SPFS3(P,R), and SPFS3(Q,R)
as 0.905335, 0.875293 and 0.947552 respectively and we can find values for
SPFS4(P,Q), SPFS4(P,R), and SPFS4(Q,R) as 0.911446, 0.864312 and 0.935455,
respectively.

Numerical Justification: From the above computations, it supports that
P1: 0 ≤ SPFSj(P,Q) ≤ 1; j = 1, 2, 3, 4
P2: SPFSj(P,Q) = 1 ⇔ P = Q; j = 1, 2, 3, 4
P3: It follows that SPFSj(P,Q) = SPFSj(Q,P ); j = 1, 2, 3, 4.

(∵ use of square and absolute value)
P4: SPFSj(P,R) ≤ SPFSj(P,Q) and SPFSj(P,R) ≤ SPFSj(Q,R); j =

1, 2, 3, 4.

4. Applications of Pythagorean Fuzzy Sets

To determine the legitimacy of PFSs, pattern recognition and medical diag-
nosis approaches to the decision making are presented in this section.

(a) Pattern Recognition. Assume that there are three known patterns A1,
A2, and A3. Each pattern can be conveyed by PFSs in X= {x1,x2,x3} as follows:

A1 = {⟨x1, 1, 0⟩, ⟨x2, 0.8, 0⟩, ⟨x3, 0.7, 0.1⟩},
A2 = {⟨x1, 0.8, 0.1⟩, ⟨x2, 1, 0⟩, ⟨x3, 0.9, 0.1⟩},
A3 = {⟨x1, 0.6, 0.2⟩, ⟨x2, 0.8, 0⟩, ⟨x3, 1, 0⟩}.

The model B which needs to be identified is as follows: B = {⟨x1, 0.5, 0.3⟩,
⟨x2, 0.6, 0.2⟩, ⟨x3, 0.8, 0.1⟩}. The goal of this task is to sort the pattern B into one
of three categories: A1, A2, and A3. For the recommended weighted similarity
measures, weight of x1, x2, x3 are assumed to be 0.5, 0.3, and 0.2, respectively.
To achieve this, the proposed similarities and the measures suggested by Wei and
Wei [37] have been calculated from B to A1, A2, and A3 as exhibited (Table 1).
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Table 1. Similarity measure between classes A1, A2, A3 and B

(A1, B) (A2, B) (A3, B)

Sim13(P,Q) 0.753293 0.772845 0.911421
Sim14(P,Q) 0.917269 0.92816 0.972924
Sim15(P,Q) 0.219088 0.254245 0.310956
Sim16(P,Q) 0.294755 0.307587 0.326082
SPFS1(P,Q) 0.702201 0.688112 0.784918
SPFS2(P,Q) 0.638988 0.620872 0.747197
SPFS3(P,Q) 0.879058 0.887487 0.936321
SPFS4(P,Q) 0.854095 0.866164 0.928437

We may deduce from the numerical findings in table 1 that the degree of
similarity between A3 and B is the highest, based on eight similarity metrics.
According to the recognition principle of maximum degree of similarity between
PFSs, all eight similarity measures assign the unknown class B to the known
class A3.

(b) Medical Diagnosis. In a conventional problem of medicinal diagnosis, we
assume that if a doctor desires to diagnose some of patients “P = {Alex, Chris,
James, Mike and Shawn}” under some demarcated diagnosis “D = {Viral fever,
Malaria, Typhoid, Stomach problem and Chest problem}” and a set of symp-
toms “S = {Temperature, Headche, Stomach pain, Chough and Chest pain}”.
The subsequent Table 2 and Table 3 provide the intent of the recommended com-
putational presentation. Suggested trigonometric similarity measures have been
given in Table 4 and Table 5. However, if we assume the weights of these symp-
toms to be 0.15, 0.25, 0.20, 0.15, and 0.25, we can use the suggested weighted
similarity measures in Tables 6 and 7.

Table 2. Symptom - Disease Pythagorean relation

Viral Fever Malaria Typhoid Stomach Pain Chest Pain
Temperature ⟨0.8, 0.1⟩ ⟨0.6, 0.1⟩ ⟨0.2, 0.8⟩ ⟨0.6, 0.1⟩ ⟨0.1, 0.6⟩
Headache ⟨0.9, 0.1⟩ ⟨0.7, 0.2⟩ ⟨0.2, 0.8⟩ ⟨0.7, 0.2⟩ ⟨0.2, 0.7⟩
Stomach Pain ⟨0.0, 0.7⟩ ⟨0.4, 0.5⟩ ⟨0.6, 0.2⟩ ⟨0.2, 0.7⟩ ⟨0.1, 0.2⟩
Cough ⟨0.7, 0.1⟩ ⟨0.7, 0.1⟩ ⟨0.0, 0.5⟩ ⟨0.1, 0.7⟩ ⟨0.0, 0.6⟩
Chest pain ⟨0.5, 0.1⟩ ⟨0.4, 0.3⟩ ⟨0.4, 0.5⟩ ⟨0.8, 0.2⟩ ⟨0.3, 0.4⟩
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Table 3. Patient - Symptom Pythagorean relation

Temperature Headache Stomach Pain Cough Chest pain

Alex ⟨0.4, 0.0⟩ ⟨0.3, 0.5⟩ ⟨0.1, 0.7⟩ ⟨0.4, 0.3⟩ ⟨0.1, 0.7⟩

Chris ⟨0.7, 0.0⟩ ⟨0.2, 0.6⟩ ⟨0.0, 0.9⟩ ⟨0.7, 0.0⟩ ⟨0.1, 0.8⟩

James ⟨0.3, 0.3⟩ ⟨0.6, 0.1⟩ ⟨0.2, 0.7⟩ ⟨0.2, 0.6⟩ ⟨0.1, 0.9⟩

Mike ⟨0.1, 0.7⟩ ⟨0.2, 0.4⟩ ⟨0.8, 0.0⟩ ⟨0.2, 0.7⟩ ⟨0.2, 0.7⟩

Shawn ⟨0.1, 0.8⟩ ⟨0.0, 0.8⟩ ⟨0.2, 0.8⟩ ⟨0.2, 0.8⟩ ⟨0.8, 0.1⟩

Table 4. Patient - Disease Pythagorean relation for SPFS1(P,Q)

Alex Chris James Mike Shawn

Viral Fever 0.633762309 0.659151182 0.602614371 0.342805574 0.418028836

Malaria 0.671998058 0.662154189 0.649195485 0.477973271 0.407924197

Typhoid 0.604393011 0.472212706 0.566920195 0.755991033 0.690886493

Stomach Pain 0.640998054 0.508047521 0.731854056 0.494562368 0.657566065

Chest Pain 0.68537 0.558406752 0.672762627 0.756366058 0.693944024

Table 5. Patient - Disease Pythagorean relation for SPFS2(P,Q)

Alex Chris James Mike Shawn

Viral Fever 0.612709859 0.643829909 0.593963527 0.445030908 0.516884038

Malaria 0.679716983 0.669339697 0.667841574 0.550341744 0.480216191

Typhoid 0.633905625 0.511042541 0.579320543 0.707672464 0.691988097

Stomach Pain 0.672216121 0.61344757 0.771484629 0.586326454 0.694560623

Chest Pain 0.668778778 0.564903325 0.656651545 0.691738507 0.629092371

Table 6. Patient - Disease Pythagorean relation for SPFS3(P,Q)

Alex Chris James Mike Shawn

Viral Fever 0.921729577 0.919845164 0.921544403 0.871946093 0.88755709

Malaria 0.930462526 0.922976582 0.932164343 0.900239879 0.884228595

Typhoid 0.922248876 0.901133253 0.908121904 0.948555276 0.936024499

Stomach Pain 0.921944595 0.895724146 0.940830927 0.893706762 0.931947321

Chest Pain 0.938884504 0.91887858 0.92766981 0.948268155 0.936910114
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Table 7. Patient - Disease Pythagorean relation for SPFS4(P,Q)

Alex Chris James Mike Shawn

Viral Fever 0.919279797 0.91769755 0.918157037 0.888069357 0.904094338

Malaria 0.933418263 0.925606823 0.933831811 0.910927351 0.897622596

Typhoid 0.927958061 0.906229853 0.912704345 0.939215346 0.9377672

Stomach Pain 0.930718445 0.918609925 0.951119265 0.912198115 0.940820646

Chest Pain 0.934359834 0.916444138 0.925143018 0.934829072 0.925058742

Observations.
(a) Taking into an account of numerical computations of above tables, it

is being determined that for the similarity measure SPFS1 (P ,Q), Alex,
Shawn and Mike are suffering from chest pain; Chris - Malaria; James -
stomach pain (Table 4).

(b) For the measure SPFS2 (P ,Q), it is being observed that Shawn and
James are suffering from stomach pain, Alex and Chris are suffering
from malaria, whereas Mike is suffering from typhoid stomach (Table 5).

(c) For the measure SPFS3 (P ,Q), it is being observed that James is suffering
from stomach pain, Chris is suffering from malaria, whereas Mike is
suffering from typhoid and Alex and Shawn are suffering from chest
pain (Table 6).

(d) For the measure SPFS4 (P ,Q), it is being observed that Shawn and
James are suffering from stomach pain, Chris is suffering from malaria,
whereas Mike is suffering from typhoid and Alex is suffering from chest
pain (Table 7).

This analysis is done on the grounds that higher value of the patient against every
similarity measure demonstrates the greater likelihood of having the disease.

5. Comparative Study

A comparison between the proposed similarity measure and current similarity
measures is undertaken based on the numerical scenarios presented to establish
the proposed similarity measure’s dominance. Table 8 shows a complete analysis
of the PFS similarity measures.

From the numerical results presented in the Tables 8, analysis has been done
between the similarity measures proposed by Wei and Wei [37] and the results
attained using our proposed similarity measures for PFSs. It has been noticed
that the results produced by applying our proposed similarity measures based on
the idea of greatest degree of similarity between PFSs are comparable to those
shown in equations (21)-(24).
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Table 8. Comparison of existing measures with the proposed
similarity measures

Comparison Alex Chris James Mike Shawn
Sim13 (P,Q) Malaria Malaria Stomach Pain Typhoid Typhoid
Sim14 (P,Q) Chest Pain Malaria Chest Pain Typhoid Chest Pain
Sim15 (P,Q) Chest Pain Malaria Stomach Pain Typhoid Typhoid
Sim16 (P,Q) Chest Pain Malaria Malaria Typhoid Chest Pain
SPFS1 (P,Q) Chest Pain Malaria Stomach Pain Chest Pain Chest Pain
SPFS2 (P , Q) Malaria Malaria Stomach Pain Typhoid Stomach Pain
SPFS3 (P,Q) Chest Pain Malaria Stomach Pain Typhoid Chest Pain
SPFS4 (P,Q) Chest Pain Malaria Stomach Pain Typhoid Stomach Pain

6. Conclusion

In this paper, novel trigonometric and weighted similarity measures that are
compatible with the traditional PFS criteria are offered. Numerical compu-
tation to confirm the validity of the proposed similarity measures has been
done.Further,applications of these similarity measures to decision making prob-
lems such as,pattern recognition and medical diagnosis has been provided. It
is verified that the proposed similarity measures can effectively overcome the
limitations of the existing similarity measures. Also, comparative analysis of the
investigated similarity measures was performed to determine the effectiveness
of the proposed measures. These intended measures can be applied to complex
decision making, linguistic sets and risk analysis in the future.
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